Enrique MartÃ-nez-Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7748117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complex genetic patterns and distribution limits mediated by native congeners of the worldwide invasive redâ€eared slider turtle. Molecular Ecology, 2022, 31, 1766-1782.	2.0	4
2	Functional niche constraints on carnivore assemblages (Mammalia: Carnivora) in the Americas: What facilitates coexistence through space and time?. Journal of Biogeography, 2022, 49, 497-510.	1.4	0
3	Raining feral cats and dogs? Implications for the conservation of medium-sized wild mammals in an urban protected area. Urban Ecosystems, 2021, 24, 83-94.	1.1	8
4	Do landscape and riverscape shape genetic patterns of the Neotropical otter, Lontra longicaudis, in eastern Mexico?. Landscape Ecology, 2021, 36, 69-87.	1.9	5
5	Rangewide habitat suitability analysis for the Mexican wolf (<i>Canis lupus baileyi</i>) to identify recovery areas in its historical distribution. Diversity and Distributions, 2021, 27, 642-654.	1.9	10
6	Eco-Geography of Feral Cotton: A Missing Piece in the Puzzle of Gene Flow Dynamics Among Members of Gossypium hirsutum Primary Gene Pool. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	8
7	Potential areas for the establishment of citrus leprosis virus vectors, Brevipalpus spp., in Mexico. Experimental and Applied Acarology, 2021, 84, 365-388.	0.7	1
8	Climate change effect on Octopus maya (Voss and SolÃs-RamÃrez, 1966) suitability and distribution in the Yucatan Peninsula, Gulf of Mexico: A correlative and mechanistic approach. Estuarine, Coastal and Shelf Science, 2021, 260, 107502.	0.9	13
9	Long-term environmental data explain better the abundance of the red octopus (Octopus maya) when testing the niche centroid hypothesis. Journal of Experimental Marine Biology and Ecology, 2021, 544, 151609.	0.7	10
10	Impacts of land management and climate change in a developing and socioenvironmental challenging transboundary region. Journal of Environmental Management, 2021, 300, 113748.	3.8	12
11	Identifying priority areas for landscape connectivity for three large carnivores in northwestern Mexico and southwestern United States. Landscape Ecology, 2021, 36, 877-896.	1.9	13
12	One hundred years of climate change in Mexico. PLoS ONE, 2020, 15, e0209808.	1.1	40
13	<scp>ntbox</scp> : An <scp>r</scp> package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 2020, 11, 1199-1206.	2.2	185
14	The Abundant Niche-centroid Hypothesis: Key Points About Unfilled Niches and the Potential Use of Supraspecfic Modeling Units. Biodiversity Informatics, 2020, 15, 92-102.	3.0	14
15	Environmental Drivers and Distribution Patterns of Carnivoran Assemblages (Mammalia: Carnivora) in the Americas: Past to Present. Journal of Mammalian Evolution, 2020, 27, 759-774.	1.0	6
16	Relationships between population densities and nicheâ€centroid distances in North American birds. Ecology Letters, 2020, 23, 555-564.	3.0	76
17	Supraspecific units in correlative niche modeling improves the prediction of geographic potential of biological invasions. PeerJ, 2020, 8, e10454.	0.9	17
18	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	1.9	19

#	Article	IF	CITATIONS
19	Distribución potencial bajo escenarios de cambio climático de corales del género Pocillopora (Anthozoa: Scleractinia) en el PacÃfico oriental tropical. Revista Mexicana De Biodiversidad, 2019, 90, .	0.4	3
20	Perils of recovering the Mexican wolf outside of its historical range. Biological Conservation, 2018, 220, 290-298.	1.9	7
21	Climatic and evolutionary factors shaping geographical gradients of species richness in Anolis lizards. Biological Journal of the Linnean Society, 2018, 123, 615-627.	0.7	16
22	Resilience of Soil Properties to Landâ€Use Change in a Tropical Dry Forest Ecosystem. Land Degradation and Development, 2018, 29, 315-325.	1.8	32
23	Inferring space from time: On the relationship between demography and environmental suitability in the desert plant O. rastrera. PLoS ONE, 2018, 13, e0201543.	1.1	4
24	Reply to Hedrick et al.: The role of genetic rescue in Mexican wolf recovery. Biological Conservation, 2018, 224, 368-369.	1.9	0
25	Climatic Niche Dynamics and Its Role in the Insular Endemism of Anolis Lizards. Evolutionary Biology, 2018, 45, 345-357.	0.5	4
26	Integrating expert knowledge and ecological niche models to estimate Mexican primates' distribution. Primates, 2018, 59, 451-467.	0.7	21
27	Genetic and climatic approaches reveal effects of Pleistocene refugia and climatic stability in an old giant of the Neotropical Dry Forest. Biological Journal of the Linnean Society, 2018, 125, 401-420.	0.7	26
28	Would behavioral thermoregulation enable pregnant viviparous tropical lizards to cope with a warmer world?. Integrative Zoology, 2017, 12, 379-395.	1.3	6
29	Livestock predation by jaguars <i>Panthera onca</i> in south-eastern Mexico: the role of local peoples' practices. Oryx, 2017, 51, 254-262.	0.5	19
30	Potential distribution of native freshwater fish in Tabasco, Mexico. Revista Mexicana De Biodiversidad, 2017, 88, 415-424.	0.4	5
31	Using microhabitat thermal heterogeneity to avoid lethal overheating: an empirical approximation in reproductive oviparous and viviparous lizards. Revista Mexicana De Biodiversidad, 2017, 88, 683-690.	0.4	5
32	The thermal niche of Neotropical nectarâ€feeding bats: Its evolution and application to predict responses to global warming. Ecology and Evolution, 2017, 7, 6691-6701.	0.8	20
33	Wild Felid Range Shift Due to Climatic Constraints in the Americas: a Bottleneck Explanation for Extinct Felids?. Journal of Mammalian Evolution, 2017, 24, 427-438.	1.0	15
34	Distribution of mammal functional diversity in the Neotropical realm: Influence of land-use and extinction risk. PLoS ONE, 2017, 12, e0175931.	1.1	30
35	Geographic distribution of Desmodus rotundus in Mexico under current and future climate change scenarios: Implications for bovine paralytic rabies infection. Veterinaria México OA, 2017, 4, .	0.2	10
36	Climatic patterns in the establishment of wintering areas by North American migratory birds. Ecology and Evolution, 2016, 6, 2022-2033.	0.8	15

#	Article	IF	CITATIONS
37	Body temperature regulation is associated with climatic and geographical variables but not wing pigmentation in two rubyspot damselflies (Odonata: Calopterygidae). Physiological Entomology, 2016, 41, 132-142.	0.6	8
38	Climatic niche attributes and diversification in <i>Anolis</i> lizards. Journal of Biogeography, 2016, 43, 134-144.	1.4	30
39	Digital Accessible Knowledge and well-inventoried sites for birds in Mexico: baseline sites for measuring faunistic change. PeerJ, 2016, 4, e2362.	0.9	9
40	Environmental and anthropogenic factors affecting the probability of occurrence of Oncomegas wageneri (Cestoda: Trypanorhyncha) in the southern Gulf of Mexico. Parasites and Vectors, 2015, 8, 609.	1.0	10
41	Twentieth century turnover of Mexican endemic avifaunas: Landscape change versus climate drivers. Science Advances, 2015, 1, e1400071.	4.7	29
42	Using Range-Wide Abundance Modeling to Identify Key Conservation Areas for the Micro-Endemic Bolson Tortoise (Gopherus flavomarginatus). PLoS ONE, 2015, 10, e0131452.	1.1	19
43	A hierarchical classification of trophic guilds for North American birds and mammals. Revista Mexicana De Biodiversidad, 2014, 85, 931-941.	0.4	52
44	An update of highâ€resolution monthly climate surfaces forÂMexico. International Journal of Climatology, 2014, 34, 2427-2437.	1.5	129
45	Potential distributional changes and conservation priorities of endemic amphibians in western Mexico as a result of climate change. Environmental Conservation, 2014, 41, 1-12.	0.7	24
46	Predicting species' abundances from occurrence data: Effects of sample size and bias. Ecological Modelling, 2014, 294, 36-41.	1.2	35
47	The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz. PLoS ONE, 2014, 9, e100957.	1.1	54
48	SELECTION OF ENVIRONMENTAL PREDICTORS FOR SPECIES DISTRIBUTION MODELING IN MAXENT. Revista Chapingo, Serie Ciencias Forestales Y Del Ambiente, 2014, XX, 188-201.	0.1	10
49	Environmental and social factors account for Mexican maize richness and distribution: A data mining approach. Agriculture, Ecosystems and Environment, 2013, 179, 25-34.	2.5	25
50	Ecological niche structure and rangewide abundance patterns of species. Biology Letters, 2013, 9, 20120637.	1.0	210
51	To converge or not to converge in environmental space: testing for similar environments between analogous succulent plants of North America and Africa. Annals of Botany, 2013, 111, 1125-1138.	1.4	23
52	Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico. Global Change Biology, 2012, 18, 1073-1082.	4.2	69
53	Modelling geographic patterns of population density of the whiteâ€ŧailed deer in central Mexico by implementing ecological niche theory. Oikos, 2012, 121, 2081-2089.	1.2	60
54	Modelación de la distribución potencial y el efecto del cambio de uso de suelo en la conservación de los ungulados silvestres del Bajo Balsas, México. Therya, 2012, 3, 67-79.	0.2	9

#	Article	IF	CITATIONS
55	Inferences from the Historical Distribution of Wild and Domesticated Maize Provide Ecological and Evolutionary Insight. PLoS ONE, 2012, 7, e47659.	1.1	79
56	Uso del modelado de nicho ecológico como una herramienta para predecir la distribución potencial de Microcystis sp (cianobacteria) en la Presa Hidroeléctrica de Aguamilpa, Nayarit, México. Revista Ambiente & Ãgua, 2012, 7, 218-234.	0.1	6
57	Current Knowledge of Leishmania Vectors in Mexico: How Geographic Distributions of Species Relate to Transmission Areas. American Journal of Tropical Medicine and Hygiene, 2011, 85, 839-846.	0.6	44
58	Local knowledge and species distribution models' contribution towards mammalian conservation. Biological Conservation, 2011, 144, 1451-1463.	1.9	19
59	Will all species with temperatureâ€dependent sex determination respond the same way to climate change? A reply to Kallimanis (2010). Oikos, 2011, 120, 795-799.	1.2	12
60	Niches and Geographic Distributions. , 2011, , .		245
61	Modeling Ecological Niches. , 2011, , .		6
62	Evaluating Model Performance and Significance. , 2011, , .		2
63	Environmental Data. , 2011, , .		0
64	The Geography of Disease Transmission. , 2011, , .		0
65	Concepts of Niches. , 2011, , .		1
66	Species' Occurrence Data. , 2011, , .		1
67	Discovering Biodiversity. , 2011, , .		0
68	Niches and Distributions in Practice: Overview. , 2011, , .		0
69	Species' Invasions. , 2011, , .		2
70	Linking Niches with Evolutionary Processes. , 2011, , .		0
71	Conservation Planning and Climate Change Effects. , 2011, , .		0

72 From Niches to Distributions. , 2011, , .

#	Article	IF	CITATIONS
73	Introduction to Applications. , 2011, , .		1
74	The climate envelope may not be empty. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E47-E47.	3.3	19
75	Phylogeographic Analyses and Paleodistribution Modeling Indicate Pleistocene In Situ Survival of Hordeum Species (Poaceae) in Southern Patagonia without Genetic or Spatial Restriction. Molecular Biology and Evolution, 2009, 26, 907-923.	3.5	107
76	Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biological Conservation, 2009, 142, 2881-2885.	1.9	66
77	Predicted and verified distributions of Ateles geoffroyi and Alouatta palliata in Oaxaca, Mexico. Primates, 2008, 49, 186-194.	0.7	17
78	Modeling distributions of disjunct populations of the Sierra Madre Sparrow. Journal of Field Ornithology, 2008, 79, 245-253.	0.3	24
79	Pervasive poleward shifts among North American bird species. Biodiversity, 2008, 9, 114-116.	0.5	3
80	Effects of Land-Cover Transformation and Climate Change on the Distribution of Two Microendemic Lizards, Genus Uma, of Northern Mexico. Journal of Herpetology, 2007, 41, 733-740.	0.2	28
81	Protected area needs in a changing climate. Frontiers in Ecology and the Environment, 2007, 5, 131-138.	1.9	630
82	Geographic evaluation of conservation status of African forest squirrels (Sciuridae) considering land use change and climate change: the importance of point data. Biodiversity and Conservation, 2007, 16, 3939-3950.	1.2	12
83	Invasive potential of common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus) in American freshwater systems. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 1903-1910.	0.7	170
84	Using Ecological-Niche Modeling as a Conservation Tool for Freshwater Species: Live-Bearing Fishes in Central Mexico. Conservation Biology, 2006, 20, 1730-1739.	2.4	62
85	Model-based uncertainty in species range prediction. Journal of Biogeography, 2006, 33, 1704-1711.	1.4	804
86	Tracking population extirpations via melding ecological niche modeling with land-cover information. Ecological Modelling, 2006, 195, 229-236.	1.2	59
87	Ecological niche modelling and prioritizing areas for species reintroductions. Oryx, 2006, 40, 411-418.	0.5	91
88	Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2005, 99, 647-655.	0.7	134
89	Planning for Climate Change: Identifying Minimumâ€Ðispersal Corridors for the Cape Proteaceae. Conservation Biology, 2005, 19, 1063-1074.	2.4	261
90	Forecasting Climate Change Effects on Salamander Distribution in the Highlands of Central Mexico1. Biotropica, 2005, 37, 202-208.	0.8	46

#	Article	IF	CITATIONS
91	Climate Change and Biodiversity: Some Considerations in Forecasting Shifts in Species' Potential Distributions. Biodiversity Informatics, 2005, 2, .	3.0	90
92	Evolution of seasonal ecological niches in the Passerina buntings (Aves: Cardinalidae). Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1151-1157.	1.2	78
93	Priority Contribution West Nile virus in the New World: potential impacts on bird species. Bird Conservation International, 2004, 14, 215-232.	0.7	25
94	Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography, 2004, 13, 305-314.	2.7	375
95	Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae). Diversity and Distributions, 2004, 10, 237-246.	1.9	67
96	Modeled climate change effects on distributions of Canadian butterfly species. Canadian Journal of Zoology, 2004, 82, 851-858.	0.4	61
97	SEASONAL NICHES OF NEARCTIC-NEOTROPICAL MIGRATORY BIRDS: IMPLICATIONS FOR THE EVOLUTION OF MIGRATION. Auk, 2004, 121, 610.	0.7	85
98	Ecological niche differentiation in the Aphelocoma jays: a phylogenetic perspective. Biological Journal of the Linnean Society, 2003, 80, 369-383.	0.7	123
99	Predicting distributions of known and unknown reptile species in Madagascar. Nature, 2003, 426, 837-841.	13.7	430
100	Coyote (Canis latrans) Food Habits in a Tropical Deciduous Forest of Western Mexico. American Midland Naturalist, 2001, 146, 210-216.	0.2	38
101	Mapping the Land Cover of Mexico Using AVHRR Time eries Data Sets. Geocarto International, 2000, 15, 7-20.	1.7	3
102	Research priorities for maintaining biodiversity's contributions to people in LatinÂAmerica. UCL Open Environment, 0, 1, .	0.0	7
103	ENM2020: A Free Online Course and Set of Resources on Modeling Species' Niches and Distributions. Biodiversity Informatics, 0, 17, .	3.0	5
104	Climatic comparison of the gray wolf (<i>Canis lupus</i>) subspecies in North America using niche-based distribution models and its implications for conservation programs. Journal of Mammalogy, 0, , .	0.6	0