Hesam Pouraliakbar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7748071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Data supporting the hierarchically activated deformation mechanisms to form ultra-fine grain microstructure in carbon containing FeMnCoCr twinning induced plasticity high entropy alloy. Data in Brief, 2022, 42, 108052.	0.5	7
2	Comparative Insight into the Interfacial Phase Evolutions during Solution Treatment of Dissimilar Friction Stir Welded AA2198-AA7475 and AA2198-AA6013 Aluminum Sheets. Materials, 2021, 14, 1290.	1.3	22
3	Grain boundary transition associated intergranular failure analysis at TMAZ/SZ interface of dissimilar AA7475-AA2198 joints by friction stir welding. Materials Letters, 2020, 280, 128557.	1.3	25
4	Three-layered SS321/AA1050/AA5083 explosive welds: Effect of PWHT on the interface evolution and its mechanical strength. International Journal of Pressure Vessels and Piping, 2020, 188, 104216.	1.2	53
5	Effect of second-phase particles evolution and lattice transformations while ultrafine graining and annealing on the corrosion resistance and electrical conductivity of Al–Mn–Si alloy. Materials Research Express, 2019, 6, 1065d9.	0.8	26
6	Mechanistic insight into the role of severe plastic deformation and post-deformation annealing in fracture behavior of Al-Mn-Si alloy. Mechanics of Materials, 2018, 122, 145-158.	1.7	42
7	Constrained groove pressing, cold-rolling, and post-deformation isothermal annealing: Consequences of their synergy on material behavior. Materials Chemistry and Physics, 2018, 206, 85-93.	2.0	43
8	Elucidating the microscopic origin of electrochemical corrosion and electrical conductivity by lattice response to severe plastic deformation in Al-Mn-Si alloy. Materials Research Bulletin, 2018, 108, 195-206.	2.7	35
9	Microalloyed steel welds by HF-ERW technique: Novel PWHT cycles, microstructure evolution and mechanical properties enhancement. International Journal of Pressure Vessels and Piping, 2017, 152, 15-26.	1.2	33
10	Constrained groove pressing and subsequent annealing of Al-Mn-Si alloy: Microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance. Materials and Design, 2017, 124, 34-46.	3.3	80
11	Microanalysis of crystallographic characteristics and structural transformations in SPDed Al Mn Si alloy by dual-straining. Journal of Alloys and Compounds, 2017, 696, 1189-1198.	2.8	73
12	Influence of interfacial adhesion on the damage tolerance of Al6061/SiCp laminated composites. Ceramics International, 2017, 43, 2632-2643.	2.3	39
13	Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed Aluminum-Manganese-Silicon alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 493-503.	2.6	64
14	Study on the post-rolling direction of severely plastic deformed Aluminum-Manganese-Silicon alloy. Archives of Civil and Mechanical Engineering, 2016, 16, 876-887.	1.9	73
15	On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al-Mg alloy. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing 2016 657 431-440	2.6	66
16	Predicting the ultimate grain size of aluminum sheets undergone constrained groove pressing. International Journal of Advanced Manufacturing Technology, 2016, 86, 1639-1658.	1.5	25
17	Duplex ceramic coating produced by low temperature thermo-reactive deposition and diffusion on the cold work tool steel substrate: Thermodynamics, kinetics and modeling. Ceramics International, 2015, 41, 9350-9360.	2.3	37
18	On the Al/Cu Dissimilar Joints Produced Through Simple Cold Compression. Transactions of the Indian Institute of Metals, 2015, 68, 991-998.	0.7	9

HESAM POURALIAKBAR

#	Article	IF	CITATIONS
19	Artificial neural networks for hardness prediction of HAZ with chemical composition and tensile test of X70 pipeline steels. Journal of Iron and Steel Research International, 2015, 22, 446-450.	1.4	42
20	Correlation of passivation current density and potential by using chemical composition and corrosion cell characteristics in HSLA steels. Measurement: Journal of the International Measurement Confederation, 2015, 75, 5-11.	2.5	28
21	Predictions of corrosion current density and potential by using chemical composition and corrosion cell characteristics in microalloyed pipeline steels. Measurement: Journal of the International Measurement Confederation, 2015, 62, 97-107.	2.5	43
22	Computer-aided modeling for predicting layer thickness of a duplex treated ceramic coating on tool steels. Ceramics International, 2014, 40, 5515-5522.	2.3	33
23	Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 608, 35-45.	2.6	139
24	Predictions of toughness and hardness by using chemical composition and tensile properties in microalloyed line pipe steels. Neural Computing and Applications, 2014, 25, 1993-1999.	3.2	47
25	Combined effect of heat treatment and rolling on pre-strained and SPDed aluminum sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 612, 371-379.	2.6	38
26	Predicting Charpy impact energy of Al6061/SiC p laminated nanocomposites in crack divider and crack arrester forms. Ceramics International, 2013, 39, 6099-6106.	2.3	29
27	PREDICTION OF MARTENSITE FRACTION OF MICROALLOYED STEEL BY ARTIFICIAL NEURAL NETWORKS. Neural Network World, 2013, 23, 117-130.	0.5	38
28	MODELING THE CORRELATION BETWEEN HEAT TREATMENT, CHEMICAL COMPOSITION AND BAINITE FRACTION OF PIPELINE STEELS BY MEANS OF ARTIFICIAL NEURAL NETWORKS. Neural Network World, 2013, 23, 351-367.	0.5	35