Subramani Kaipannan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/774784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomass-Derived Activated Porous Carbon from Rice Straw for a High-Energy Symmetric Supercapacitor in Aqueous and Non-aqueous Electrolytes. Energy & Fuels, 2017, 31, 977-985.	2.5	291
2	<i>Aloe vera</i> Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 35191-35202.	4.0	198
3	All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Advances, 2017, 7, 6648-6659.	1.7	184
4	Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes. Electrochimica Acta, 2017, 228, 586-596.	2.6	171
5	Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Nextâ€Generation Supercapacitors: A Review. Advanced Functional Materials, 2022, 32, .	7.8	152
6	Soya derived heteroatom doped carbon as a promising platform for oxygen reduction, supercapacitor and CO2 capture. Carbon, 2017, 114, 679-689.	5.4	134
7	Manganese hexacyanoferrate derived Mn3O4 nanocubes–reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 4952.	1.3	120
8	Fabrication of 9.6 V High-performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-derived Ni(OH)2 Nanosheets and Bio-derived Activated Carbon. Scientific Reports, 2019, 9, 1104.	1.6	105
9	Orange Peel Derived Activated Carbon for Fabrication of Highâ€Energy and Highâ€Rate Supercapacitors. ChemistrySelect, 2017, 2, 11384-11392.	0.7	103
10	CoS2 engulfed ultra-thin S-doped g-C3N4 and its enhanced electrochemical performance in hybrid asymmetric supercapacitor. Journal of Colloid and Interface Science, 2021, 584, 204-215.	5.0	84
11	Electrochemical investigation of manganese ferrites prepared via a facile synthesis route for supercapacitor applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 668-677.	2.3	76
12	Redox-Additives in Aqueous, Non-Aqueous, and All-Solid-State Electrolytes for Carbon-Based Supercapacitor: A Mini-Review. Energy & Fuels, 2021, 35, 6465-6482.	2.5	64
13	The fascinating supercapacitive performance of activated carbon electrodes with enhanced energy density in multifarious electrolytes. Sustainable Energy and Fuels, 2020, 4, 3029-3041.	2.5	60
14	Facile and Scalable Ultra–fine Cobalt Oxide/Reduced Graphene Oxide Nanocomposites for High Energy Asymmetric Supercapacitorsâ€. ChemistrySelect, 2016, 1, 3455-3467.	0.7	58
15	MnCo2S4 – MXene: A novel hybrid electrode material for high performance long-life asymmetric supercapattery. Journal of Colloid and Interface Science, 2021, 600, 264-277.	5.0	57
16	Waste Toner-Derived Carbon/Fe ₃ O ₄ Nanocomposite for High-Performance Supercapacitor. ACS Omega, 2019, 4, 15798-15805.	1.6	56
17	Hydrothermal synthesis of cobalt telluride nanorods for a high performance hybrid asymmetric supercapacitor. RSC Advances, 2020, 10, 13632-13641.	1.7	53
18	Facile synthesis of ZnO nanoflowers/reduced graphene oxide nanocomposite using zinc hexacyanoferrate for supercapacitor applications. Materials Letters, 2019, 236, 424-427.	1.3	45

#	Article	IF	CITATIONS
19	Inâ€Situ Synergistic 2D/2D MXene/BCN Heterostructure for Superlative Energy Density Supercapacitor with Superâ€Long Life. Small, 2022, 18, e2106051.	5.2	42
20	NiTe Nanorods as Electrode Material for High Performance Supercapacitor Applications. ChemistrySelect, 2018, 3, 9034-9040.	0.7	41
21	Electrochemical Performance of Thespesia Populnea Seeds Derived Activated Carbon - Supercapacitor and Its Improved Specific Energy in Redox Additive Electrolytes. Journal of Energy Storage, 2020, 32, 101939.	3.9	30
22	Facile and scalable route to sheets-on-sheet mesoporous Ni–Co-hydroxide/reduced graphene oxide nanocomposites and their electrochemical and magnetic properties. RSC Advances, 2016, 6, 15941-15951.	1.7	29
23	One-Pot Hydrothermal Synthesis of Nickel Cobalt Telluride Nanorods for Hybrid Energy Storage Systems. Energy & Fuels, 2021, 35, 12527-12537.	2.5	29
24	Sandwich layered Li0.32Al0.68MnO2(OH)2 from spent Li-ion battery to build high-performance supercapacitor: Waste to energy storage approach. Journal of Alloys and Compounds, 2020, 827, 154336.	2.8	25
25	Dual heteroatoms doped SBA-15 templated porous carbon for symmetric supercapacitor in dual redox additive electrolyte. Journal of Colloid and Interface Science, 2022, 606, 286-297.	5.0	25
26	Synthesis of GNS-MnS hybrid nanocomposite for enhanced electrochemical energy storage applications. Materials Chemistry and Physics, 2019, 230, 249-257.	2.0	22
27	Augmenting the electrochemical performance of NiMn2O4 by doping of transition metal ions and compositing with rGO. Journal of Colloid and Interface Science, 2021, 598, 409-418.	5.0	19
28	Grapheneâ€Polymer//Grapheneâ€Manganese Oxide Nanocompositesâ€Based Asymmetric High Energy Supercapacitor with 1.8â€V Cell Voltage in Aqueous Solution. ChemistrySelect, 2017, 2, 10754-10761.	0.7	17
29	High-Performance High-Voltage Symmetric Supercapattery Based on a Graphitic Carbon Nitride/Bismuth Vanadate Nanocomposite. Energy & Fuels, 2020, 34, 16858-16869.	2.5	17
30	Waste engine oil derived porous carbon/ZnS Nanocomposite as Bi-functional electrocatalyst for supercapacitor and oxygen reduction. Journal of Energy Storage, 2020, 32, 101774.	3.9	15
31	A facile approach to fabricate <i>Saccharum spontaneum</i> -derived porous carbon-based supercapacitors for excellent energy storage performance in redox active electrolytes. Sustainable Energy and Fuels, 2021, 5, 518-531.	2.5	14
32	TiO2/Carbon allotrope nanohybrids for supercapacitor application with theoretical insights from density functional theory. Applied Surface Science, 2021, 563, 150259.	3.1	14
33	One-step superficial electrodeposition of nickel-cobalt-sulfide for high-energy hybrid asymmetric supercapacitor. Materials Letters, 2022, 323, 132563.	1.3	12
34	Template Assisted Synthesis of Nitrogen doped 3D-Graphene for Supercapacitor Applications. Materials Today: Proceedings, 2017, 4, 12144-12151.	0.9	5