Bo Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7747479/publications.pdf

Version: 2024-02-01

1125743 840776 13 625 11 13 citations h-index g-index papers 14 14 14 607 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Structure search of two-dimensional systems using CALYPSO methodology. Frontiers of Physics, 2022, 17, 1.	5.0	11
2	Theoretical study on stability and ion transport property with halide doping of Na ₃ SbS ₄ electrolyte for all-solid-state batteries. Journal of Materials Chemistry A, 2022, 10, 2235-2248.	10.3	17
3	Atomistic insight into the dopant impacts at the garnet Li ₇ La ₃ Zr ₂ O ₁₂ solid electrolyte grain boundaries. Journal of Materials Chemistry A, 2022, 10, 10083-10091.	10.3	13
4	Revealing Atomicâ€Scale Ionic Stability and Transport around Grain Boundaries of Garnet Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolyte. Advanced Energy Materials, 2022, 12, .	19.5	25
5	First-Principles Study of Microscopic Electrochemistry at the LiCoO ₂ Cathode/LiNbO ₃ Coating/β-Li ₃ PS ₄ Solid Electrolyte Interfaces in an All-Solid-State Battery. ACS Applied Materials & Diterfaces, 2021, 13, 11765-11773.	8.0	29
6	Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. Npj Computational Materials, 2021, 7, .	8.7	39
7	Tunable Doping of Rhenium and Vanadium into Transition Metal Dichalcogenides for Twoâ€Dimensional Electronics. Advanced Science, 2021, 8, e2004438.	11.2	66
8	Mixed-Salt Enhanced Chemical Vapor Deposition of Two-Dimensional Transition Metal Dichalcogenides. Chemistry of Materials, 2021, 33, 7301-7308.	6.7	22
9	Li ⁺ Transport Mechanism at the Heterogeneous Cathode/Solid Electrolyte Interface in an All-Solid-State Battery via the First-Principles Structure Prediction Scheme. Chemistry of Materials, 2020, 32, 85-96.	6.7	52
10	Electron and Ion Transfer across Interfaces of the NASICON-Type LATP Solid Electrolyte with Electrodes in All-Solid-State Batteries: A Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Functional Theory Study via an Explicit Interface Model. ACS Applied Materials & Density Function Theory Study via Applied Via Appl	8.0	44
11	Surface-Dependent Stability of the Interface between Garnet Li ₇ La ₃ Zr ₂ O ₁₂ and the Li Metal in the All-Solid-State Battery from First-Principles Calculations. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16350-16358.	8.0	52
12	Interface structure prediction via CALYPSO method. Science Bulletin, 2019, 64, 301-309.	9.0	219
13	Structure Prediction of Atoms Adsorbed on Two-Dimensional Layer Materials: Method and Applications. Journal of Physical Chemistry C, 2015, 119, 20111-20118.	3.1	36