
Aren van Waarde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7747243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacokinetic Modeling of [¹¹ C]GSK-189254, PET Tracer Targeting H ₃ Receptors, in Rat Brain. Molecular Pharmaceutics, 2022, 19, 918-928.	2.3	1
2	Dose-response assessment of cerebral P-glycoprotein inhibition in vivo with [18F]MC225 and PET. Journal of Controlled Release, 2022, 347, 500-507.	4.8	7
3	Impact of an Adenosine A _{2A} Receptor Agonist and Antagonist on Binding of the Dopamine D ₂ Receptor Ligand [¹¹ C]raclopride in the Rodent Striatum. Molecular Pharmaceutics, 2022, 19, 2992-3001.	2.3	2
4	Allosteric Interactions between Adenosine A2A and Dopamine D2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. International Journal of Molecular Sciences, 2021, 22, 1719.	1.8	17
5	PET/CT Imaging and Physiology of Mice on High Protein Diet. International Journal of Molecular Sciences, 2021, 22, 3236.	1.8	1
6	Mapping Arginase Expression with ¹⁸ F-Fluorinated Late-Generation Arginase Inhibitors Derived from Quaternary α-Amino Acids. Journal of Nuclear Medicine, 2021, 62, 1163-1170.	2.8	3
7	On the role of Brain Imaging in drug development for psychiatry. Current Clinical Pharmacology, 2021, 16, 46-71.	0.2	0
8	PET Agents in Dementia: An Overview. Seminars in Nuclear Medicine, 2021, 51, 196-229.	2.5	23
9	Head-to-head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates, tracers for measuring P-glycoprotein function. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4307-4317.	3.3	6
10	<i>In Vivo</i> Induction of P-Glycoprotein Function can be Measured with [¹⁸ F]MC225 and PET. Molecular Pharmaceutics, 2021, 18, 3073-3085.	2.3	11
11	Is cyclooxygenaseâ€1 involved in neuroinflammation?. Journal of Neuroscience Research, 2021, 99, 2976-2998.	1.3	28
12	[¹⁸ F]Atorvastatin Pharmacokinetics and Biodistribution in Healthy Female and Male Rats. Molecular Pharmaceutics, 2021, 18, 3378-3386.	2.3	8
13	Synthesis and Evaluation of 18F-Enzalutamide, a New Radioligand for PET Imaging of Androgen Receptors: A Comparison with 16î²-18F-Fluoro-5î±-Dihydrotestosterone. Journal of Nuclear Medicine, 2021, 62, 1140-1145.	2.8	7
14	Pharmacokinetic Modeling of (<i>R</i>)-[¹¹ C]verapamil to Measure the P-Glycoprotein Function in Nonhuman Primates. Molecular Pharmaceutics, 2021, 18, 416-428.	2.3	3
15	Pharmacokinetic Modeling of [18F]MC225 for Quantification of the P-Glycoprotein Function at the Blood–Brain Barrier in Non-Human Primates with PET. Molecular Pharmaceutics, 2020, 17, 3477-3486.	2.3	14
16	Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. International Journal of Molecular Sciences, 2020, 21, 5291.	1.8	66
17	Effect of Dopamine D ₂ Receptor Antagonists on [¹⁸ F]-FEOBV Binding. Molecular Pharmaceutics, 2020, 17, 865-872.	2.3	3
18	The Acute and Early Effects of Whole-Brain Irradiation on Glial Activation, Brain Metabolism, and Behavior: a Positron Emission Tomography Study. Molecular Imaging and Biology, 2020, 22, 1012-1020.	1.3	8

#	Article	IF	CITATIONS
19	Test–Retest Repeatability of [18F]MC225-PET in Rodents: A Tracer for Imaging of P-gp Function. ACS Chemical Neuroscience, 2020, 11, 648-658.	1.7	8
20	Test-Retest Stability of Cerebral 2-Deoxy-2-[18F]Fluoro-D-Glucose ([18F]FDG) Positron Emission Tomography (PET) in Male and Female Rats. Molecular Imaging and Biology, 2019, 21, 240-248.	1.3	6
21	Hunting for the highâ€affinity state of Gâ€proteinâ€coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Medicinal Research Reviews, 2019, 39, 1014-1052.	5.0	22
22	Avenues to molecular imaging of dying cells: Focus on cancer. Medicinal Research Reviews, 2018, 38, 1713-1768.	5.0	30
23	Potential Therapeutic Applications of Adenosine A _{2A} Receptor Ligands and Opportunities for A _{2A} Receptor Imaging. Medicinal Research Reviews, 2018, 38, 5-56.	5.0	35
24	PET Imaging with S-[11C]Methyl-L-Cysteine and L-[Methyl-11C]Methionine in Rat Models of Glioma, Glioma Radiotherapy, and Neuroinflammation. Molecular Imaging and Biology, 2018, 20, 465-472.	1.3	7
25	Synthesis and Evaluation of the Estrogen Receptor β–Selective Radioligand 2- ¹⁸ F-Fluoro-6-(6-Hydroxynaphthalen-2-yl)Pyridin-3-ol: Comparison with 16α- ¹⁸ F-Fluoro-17Ĩ²-Estradiol. Journal of Nuclear Medicine, 2017, 58, 554-559.	2.8	19
26	In Vivo Quantification of ERβ Expression by Pharmacokinetic Modeling: Studies with ¹⁸ F-FHNP PET. Journal of Nuclear Medicine, 2017, 58, 1743-1748.	2.8	6
27	Preclinical Evaluation and Quantification of 18F-Fluoroethyl and 18F-Fluoropropyl Analogs of SCH442416 as Radioligands for PET Imaging of the Adenosine A2A Receptor in Rat Brain. Journal of Nuclear Medicine, 2017, 58, 466-472.	2.8	18
28	Comparison of In Vitro Assays in Selecting Radiotracers for In Vivo P-Glycoprotein PET Imaging. Pharmaceuticals, 2017, 10, 76.	1.7	4
29	Novel Approach to Repeated Arterial Blood Sampling in Small Animal PET: Application in a Test-Retest Study with the Adenosine A1 Receptor Ligand [11C]MPDX. Molecular Imaging and Biology, 2016, 18, 715-723.	1.3	7
30	P-glycoprotein Function in the Rodent Brain Displays a Daily Rhythm, a Quantitative In Vivo PET Study. AAPS Journal, 2016, 18, 1524-1531.	2.2	21
31	Sigma-1 Agonist Binding in the Aging Rat Brain: a MicroPET Study with [11C]SA4503. Molecular Imaging and Biology, 2016, 18, 588-597.	1.3	11
32	Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression. Synapse, 2015, 69, 226-232.	0.6	5
33	Serotonin-2C antagonism augments the effect of citalopram on serotonin and dopamine levels in the ventral tegmental area and nucleus accumbens. Neurochemistry International, 2015, 81, 10-15.	1.9	9
34	Altered Sigma-1 Receptor Expression in Two Animal Models of Cognitive Impairment. Molecular Imaging and Biology, 2015, 17, 231-238.	1.3	4
35	Cutamesine Overcomes REM Sleep Deprivation-Induced Memory Loss: Relationship to Sigma-1 Receptor Occupancy. Molecular Imaging and Biology, 2015, 17, 364-372.	1.3	7
36	MicroPET Evaluation of a Hydroxamate-Based MMP Inhibitor, [18F]FB-ML5, in a Mouse Model of Cigarette Smoke-Induced Acute Airway Inflammation. Molecular Imaging and Biology, 2015, 17, 680-687.	1.3	5

AREN VAN WAARDE

#	Article	IF	CITATIONS
37	Pridopidine selectively occupies sigma-1 rather than dopamine D2 receptors at behaviorally active doses. Psychopharmacology, 2015, 232, 3443-3453.	1.5	55
38	A dual inhibitor of matrix metalloproteinases and a disintegrin and metalloproteinases, [18F]FB-ML5, as a molecular probe for non-invasive MMP/ADAM-targeted imaging. Bioorganic and Medicinal Chemistry, 2015, 23, 192-202.	1.4	17
39	Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2703-2714.	1.4	127
40	[¹¹ C]5-HTP and microPET are Not Suitable for Pharmacodynamic Studies in the Rodent Brain. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 118-125.	2.4	10
41	PET Imaging of Adenosine A ₁ Receptor Occupancy. Journal of Nuclear Medicine, 2014, 55, 1918-1918.	2.8	2
42	Acute social defeat does not alter cerebral 5â€HT _{2A} receptor binding in male Wistar rats. Synapse, 2014, 68, 379-386.	0.6	9
43	Cerebral adenosine A1 receptors are upregulated in rodent encephalitis. NeuroImage, 2014, 92, 83-89.	2.1	9
44	Dose-dependent sigma-1 receptor occupancy by donepezil in rat brain can be assessed with 11C-SA4503 and microPET. Psychopharmacology, 2014, 231, 3997-4006.	1.5	27
45	cerebral beta-adrenoceptors. Nuclear Medicine and Biology, 2014, 41, 203-209.	0.3	3
46	Positron Emission Tomography (PET) Imaging of Opioid Receptors. , 2014, , 585-623.		2
47	In Vivo Evaluation of 1-O-(4-(2-Fluoroethyl-Carbamoyloxymethyl)-2-Nitrophenyl)-O-β-D-Glucopyronuronate: A Positron Emission Tomographic Tracer for Imaging β-Glucuronidase Activity in a Tumor/Inflammation Rodent Model. Molecular Imaging, 2012, 11, 7290.2011.00029.	0.7	9
48	The cholinergic system, sigma-1 receptors and cognition. Behavioural Brain Research, 2011, 221, 543-554.	1.2	78
49	Sigma Receptors in Oncology: Therapeutic and Diagnostic Applications of Sigma Ligands. Current Pharmaceutical Design, 2010, 16, 3519-3537.	0.9	96
50	Synthesis and Preclinical Evaluation of Novel PET Probes for P-Glycoprotein Function and Expression. Journal of Medicinal Chemistry, 2009, 52, 4524-4532.	2.9	52
51	Synthesis and preliminary evaluation of (S)-[11C]-exaprolol, a novel β-adrenoceptor ligand for PET. Neurochemistry International, 2008, 52, 729-733.	1.9	8
52	Evaluation of [11C]rofecoxib as PET tracer for cyclooxygenase 2 overexpression in rat models of inflammation. Nuclear Medicine and Biology, 2008, 35, 35-42.	0.3	115
53	Proliferation Markers for the Differential Diagnosis of Tumor and Inflammation. Current Pharmaceutical Design, 2008, 14, 3326-3339.	0.9	58
54	Rapid Reduction of Â1-Receptor Binding and 18F-FDG Uptake in Rat Gliomas After In Vivo Treatment with Doxorubicin. Journal of Nuclear Medicine, 2007, 48, 1320-1326.	2.8	20

AREN VAN WAARDE

#	Article	IF	CITATIONS
55	Comparison of sigma-ligands and metabolic PET tracers for differentiating tumor from inflammation. Journal of Nuclear Medicine, 2006, 47, 150-4.	2.8	70
56	Early response of sigma-receptor ligands and metabolic PET tracers to 3 forms of chemotherapy: an in vitro study in glioma cells. Journal of Nuclear Medicine, 2006, 47, 1538-45.	2.8	20
57	In vivo Binding Behavior of Dopamine Receptor Agonist (+)â"PD 128907 and Implications for the "Ceiling Effect―in Endogenous Competition Studies with [11C]Raclopride—a Positron Emission Tomography Study in Macaca mulatta. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 531-535.	2.4	20
58	PET Imaging of Beta-Adrenoceptors in Human Brain: A Realistic Goal or a Mirage?. Current Pharmaceutical Design, 2004, 10, 1519-1536.	0.9	35
59	Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. Journal of Nuclear Medicine, 2004, 45, 695-700.	2.8	189
60	Tumor imaging with 2 sigma-receptor ligands, 18F-FE-SA5845 and 11C-SA4503: a feasibility study. Journal of Nuclear Medicine, 2004, 45, 1939-45.	2.8	37
61	Quantifying drug-related 5-HT1A receptor occupancy with [18F]MPPF. Psychopharmacology, 2001, 155, 193-197.	1.5	14
62	Preclinical testing of N-[11c]-methyl-piperidin-4-yl 2-cyclohexyl-2-hydroxy-2-phenylacetate, a novel radioligand for detection of cerebral muscarinic receptors using PET. , 2000, 35, 62-67.		4
63	Binding of the Dual-Action Anti-Parkinsonian Drug AC-0029 to Dopamine D ₂ and Histamine H ₃ Receptors: A PET Study in Healthy Rats. Molecular Pharmaceutics, 0, , .	2.3	Ο