Wei Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7747045/publications.pdf

Version: 2024-02-01

147801 289244 55,932 41 31 40 citations h-index g-index papers 43 43 43 91434 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Impact of gene annotation choice on the quantification of RNA-seq data. BMC Bioinformatics, 2022, 23, 107.	2.6	8
2	Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic <i>P. falciparum</i> malaria. Molecular Systems Biology, 2022, 18, e10824.	7.2	9
3	IL-36G promotes cancer-cell intrinsic hallmarks in human gastric cancer cells. Cytokine, 2022, 155, 155887.	3.2	6
4	Transforming growth factor- \hat{l}^2 -regulated mTOR activity preserves cellular metabolism to maintain long-term TAcell responses in chronic infection. Immunity, 2021, 54, 1698-1714.e5.	14.3	82
5	Read trimming is not required for mapping and quantification of RNA-seq reads at the gene level. NAR Genomics and Bioinformatics, 2020, 2, Iqaa068.	3.2	22
6	Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nature Immunology, 2020, 21, 1256-1266.	14.5	160
7	TCF-1 limits the formation of Tc17 cells via repression of the MAF–RORγt axis. Journal of Experimental Medicine, 2019, 216, 1682-1699.	8.5	48
8	c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host–microbiota homeostasis. Nature Immunology, 2019, 20, 471-481.	14.5	138
9	The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research, 2019, 47, e47-e47.	14.5	1,744
10	Transcription Factor T-bet in B Cells Modulates Germinal Center Polarization and Antibody Affinity Maturation in Response to Malaria. Cell Reports, 2019, 29, 2257-2269.e6.	6.4	36
11	IRF4 Activity Is Required in Established Plasma Cells to Regulate Gene Transcription and Mitochondrial Homeostasis. Cell Reports, 2019, 29, 2634-2645.e5.	6.4	47
12	Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans. Nucleic Acids Research, 2019, 47, D780-D785.	14.5	104
13	The NUP98-HOXD13 Fusion Oncogene Induces Thymocyte Self-Renewal Via Lmo2/Lyl1. Blood, 2018, 132, 2614-2614.	1.4	O
14	Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb. Immunity, 2017, 46, 78-91.	14.3	83
15	The TNF Receptor Superfamily-NF-κB Axis Is Critical to Maintain Effector Regulatory T Cells in Lymphoid and Non-lymphoid Tissues. Cell Reports, 2017, 20, 2906-2920.	6.4	115
16	Transcription Factor IRF4 Promotes CD8+ T Cell Exhaustion and Limits the Development of Memory-like T Cells during Chronic Infection. Immunity, 2017, 47, 1129-1141.e5.	14.3	335
17	Deciphering the Innate Lymphoid Cell Transcriptional Program. Cell Reports, 2016, 17, 436-447.	6.4	131
18	Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development. Journal of Experimental Medicine, 2016, 213, 1095-1111.	8.5	53

#	Article	IF	CITATIONS
19	Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science, 2016, 352, 459-463.	12.6	721
20	Transforming growth factor–β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Science Signaling, 2016, 9, ra46.	3.6	88
21	The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity, 2016, 44, 103-115.	14.3	101
22	Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of <i>Cdkn2a</i> Genes and Development, 2016, 30, 78-91.	5.9	30
23	A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nature Immunology, 2016, 17, 422-432.	14.5	145
24	Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nature Immunology, 2016, 17, 179-186.	14.5	211
25	A crucial role for the homeodomain transcription factor Hhex in lymphopoiesis. Blood, 2015, 125, 803-814.	1.4	39
26	Blocking IL-6 trans-Signaling Prevents High-Fat Diet-Induced Adipose Tissue Macrophage Recruitment but Does Not Improve Insulin Resistance. Cell Metabolism, 2015, 21, 403-416.	16.2	208
27	The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells. Genes and Development, 2015, 29, 129-143.	5.9	40
28	limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 2015, 43, e47-e47.	14.5	26,032
29	The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue–resident regulatory T cells. Nature Immunology, 2015, 16, 276-285.	14.5	442
30	Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nature Immunology, 2015, 16, 663-673.	14.5	332
31	Whole transcriptome analysis for T cell receptor-affinity and IRF4-regulated clonal expansion of T cells. Genomics Data, 2014, 2, 396-398.	1.3	4
32	Oct2 and Obf1 as Facilitators of B:T Cell Collaboration during a Humoral Immune Response. Frontiers in Immunology, 2014, 5, 108.	4.8	25
33	voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology, 2014, 15, R29.	9.6	4,603
34	featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30, 923-930.	4.1	16,839
35	Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO Journal, 2014, 33, 2721-2734.	7.8	67
36	The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation. Journal of Experimental Medicine, 2014, 211, 2169-2181.	8.5	126

#	Article	IF	CITATIONS
37	Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nature Communications, 2014, 5, 5125.	12.8	122
38	Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia. Genes and Development, 2014, 28, 1337-1350.	5.9	73
39	A lineage of diploid platelet-forming cells precedes polyploid megakaryocyte formation in the mouse embryo. Blood, 2014, 124, 2725-2729.	1.4	52
40	Global Changes in the Mammary Epigenome Are Induced by Hormonal Cues and Coordinated by Ezh2. Cell Reports, 2013, 3, 411-426.	6.4	117
41	The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Research, 2013, 41, e108-e108.	14.5	2,389