
Mi-Kyung Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7746963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid and Sensitive Detection of Salmonella Typhimurium on Eggshells by Using Wireless Biosensors. Journal of Food Protection, 2012, 75, 631-636.	0.8	76
2	Evaluation of phage-based magnetoelastic biosensors for direct detection of Salmonella Typhimurium on spinach leaves. Sensors and Actuators B: Chemical, 2013, 176, 1134-1140.	4.0	61
3	Detection of methicillin-resistant Staphylococcus aureus using novel lytic phage-based magnetoelastic biosensors. Sensors and Actuators B: Chemical, 2015, 210, 129-136.	4.0	51
4	Recent Trends in Salmonella Outbreaks and Emerging Technology for Biocontrol of Salmonella Using Phages in Foods: A Review. Journal of Microbiology and Biotechnology, 2017, 27, 2075-2088.	0.9	46
5	Detection of Salmonella typhimurium Grown Directly on Tomato Surface Using Phage-Based Magnetoelastic Biosensors. Food and Bioprocess Technology, 2013, 6, 682-689.	2.6	40
6	Rapid detection of Yersinia enterocolitica using a single–walled carbon nanotube-based biosensor for Kimchi product. LWT - Food Science and Technology, 2019, 108, 48-54.	2.5	37
7	The effect of incubation time for Salmonella Typhimurium binding to phage-based magnetoelastic biosensors. Food Control, 2012, 26, 539-545.	2.8	35
8	Single walled carbon nanotube based biosensor for detection of peanut allergy-inducing protein ara h1. Korean Journal of Chemical Engineering, 2018, 35, 172-178.	1.2	30
9	The analytical comparison of phage-based magnetoelastic biosensor with TaqMan-based quantitative PCR method to detect Salmonella Typhimurium on cantaloupes. Food Control, 2013, 33, 330-336.	2.8	29
10	Relative sweetness, sweetness quality, and temporal profile of xylooligosaccharides and luo han guo (Siraitia grosvenorii) extract. Food Science and Biotechnology, 2015, 24, 965-973.	1.2	28
11	Development of Single-Walled Carbon Nanotube-Based Biosensor for the Detection of <i> Staphylococcus aureus</i> . Journal of Food Quality, 2017, 2017, 1-8.	1.4	26
12	Blocking Agent Optimization for Nonspecific Binding on Phage Based Magnetoelastic Biosensors. Journal of the Electrochemical Society, 2012, 159, B818-B823.	1.3	21
13	Lytic Phage-Based Magnetoelastic Biosensors for On-site Detection of Methicillin-Resistant <i>Staphylococcus aureus</i> on Spinach Leaves. Journal of the Electrochemical Society, 2015, 162, B230-B235.	1.3	21
14	Assessment of peanut allergen Ara h1 in processed foods using a SWCNTs-based nanobiosensor. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1134-1142.	0.6	20
15	Isolation and characterization of a novel Escherichia coli O157:H7-specific phage as a biocontrol agent. Journal of Environmental Health Science & Engineering, 2020, 18, 189-199.	1.4	20
16	Optimization and application of a dithiobis-succinimidyl propionate-modified immunosensor platform to detect Listeria monocytogenes in chicken skin. Sensors and Actuators B: Chemical, 2012, 171-172, 323-331.	4.0	19
17	The effect of incubation temperature on the binding of Salmonella typhimurium to phage-based magnetoelastic biosensors. Sensors and Actuators B: Chemical, 2011, 160, 1427-1433.	4.0	18
18	Rapid Detection of <i>E. coli</i> O157:H7 on Turnip Greens Using a Modified Gold Biosensor Combined with Light Microscopic Imaging System. Journal of Food Science, 2012, 77, M127-34.	1.5	17

MI-KYUNG PARK

#	Article	IF	CITATIONS
19	Phageâ€Based Biosensor and Optimization of Surface Blocking Agents to Detect <i>Salmonella</i> Typhimurium on Romaine Lettuce. Journal of Food Safety, 2017, 37, e12299.	1.1	16
20	lsolation and Characterization of a Lytic and Highly Specific Phage against Yersinia enterocolitica as a Novel Biocontrol Agent. Journal of Microbiology and Biotechnology, 2018, 28, 1946-1954.	0.9	16
21	Characterization of a New and Efficient Polyvalent Phage Infecting E. coli O157:H7, Salmonella spp., and Shigella sonnei. Microorganisms, 2021, 9, 2105.	1.6	16
22	Detection of Peanut Allergen Ara h 6 in Commercially Processed Foods using a Single-Walled Carbon Nanotube–Based Biosensor. Journal of AOAC INTERNATIONAL, 2018, 101, 1558-1565.	0.7	14
23	Reusability of a single-walled carbon nanotube-based biosensor for detecting peanut allergens and Y. enterocolitica. Microelectronic Engineering, 2020, 225, 111281.	1.1	14
24	Genomic-, phenotypic-, and toxicity-based safety assessment and probiotic potency of <i>Bacillus coagulans</i> IDCC 1201 isolated from green malt. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	14
25	Novel Approach of a Phage-Based Magnetoelastic Biosensor for the Detection of Salmonella enterica serovar Typhimurium in Soil. Journal of Microbiology and Biotechnology, 2016, 26, 2051-2059.	0.9	14
26	Isolation and Characterization of a Novel Broad-host-range Bacteriophage Infecting Salmonella enterica subsp. enterica for Biocontrol and Rapid Detection. Journal of Microbiology and Biotechnology, 2017, 27, 2151-2155.	0.9	14
27	A Hybrid RSM-ANN-GA Approach on Optimization of Ultrasound-Assisted Extraction Conditions for Bioactive Component-Rich Stevia rebaudiana (Bertoni) Leaves Extract. Foods, 2022, 11, 883.	1.9	13
28	Effects of Surface Morphologies of Fresh Produce on the Performance of Phage-Based Magnetoelastic Biosensors. Journal of the Electrochemical Society, 2013, 160, B6-B12.	1.3	12
29	Lytic KFS-SE2 phage as a novel bio-receptor for Salmonella Enteritidis detection. Journal of Microbiology, 2019, 57, 170-179.	1.3	12
30	Studies on Lytic, Tailed Bacillus cereus-specific Phage for Use in a Ferromagnetoelastic Biosensor as a Novel Recognition Element. Journal of Microbiology and Biotechnology, 2018, 28, 87-94.	0.9	11
31	Exploring the feasibility of Salmonella Typhimurium-specific phage as a novel bio-receptor. Journal of Animal Science and Technology, 2020, 62, 668-681.	0.8	11
32	Rapid Foreign Object Detection System on Seaweed Using VNIR Hyperspectral Imaging. Sensors, 2021, 21, 5279.	2.1	9
33	Repellent efficacy of essential oils and plant extracts against Tribolium castaneum and Plodia interpunctella. Entomological Research, 2020, 50, 450-459.	0.6	8
34	Safety Evaluation of <i>Bifidobacterium breve</i> IDCC4401 Isolated from Infant Feces for Use as a Commercial Probiotic. Journal of Microbiology and Biotechnology, 2021, 31, 949-955.	0.9	8
35	Immunosensors combined with a light microscopic imaging system for rapid detection of Salmonella. Food Control, 2016, 59, 780-786.	2.8	7
36	Effect of Competing Foodborne Pathogens on the Selectivity and Binding Kinetics of a Lytic Phage for Methicillin-Resistant <i>Staphylococcus aureus</i> Detection. Journal of the Electrochemical Society, 2017, 164, B142-B146.	1.3	7

#	Article	IF	CITATIONS
37	Effect of steaming on the functional compounds and antioxidant activity of Fijian taro (Colocasia) Tj ETQq1 1 0.7	′84314 rgE 0.2	BT ₅ /Overlock
38	Optimization and Pretreatment for Hot Water Extraction of Korean Deer (Cervus canadensis) Tj ETQq0 0 0 rgBT ,	Oyerlock I	L0 ₅ Tf 50 702
39	U-Net-Based Foreign Object Detection Method Using Effective Image Acquisition System: A Case of Almond and Green Onion Flake Food Process. Sustainability, 2021, 13, 13834.	1.6	4
40	Characterization of hot water extract from Korean deer velvet antler (Cervus canadensis Erxleben). Korean Journal of Food Preservation, 2020, 27, 725-733.	0.2	3

41	Antiviral effect of persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) extracts on murine norovirus. Korean Journal of Food Preservation, 2021, 28, 437-444.	0.2	0

42	Studies on Shigella sonnei-specific bacteriophage isolated from a slaughterhouse. Korean Journal of Food Preservation, 2018, 25, 390-396.	0.2	0
----	--	-----	---