Erjun Zhou

List of Publications by Citations

Source: https://exaly.com/author-pdf/7746818/erjun-zhou-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

157 6,888 47 77 g-index

164 8,109 8.1 6.32 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
157	All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2799-803	16.4	379
156	Synthesis and Photovoltaic Properties of Diketopyrrolopyrrole-Based DonorAcceptor Copolymers. <i>Chemistry of Materials</i> , 2009 , 21, 4055-4061	9.6	273
155	Design of Diketopyrrolopyrrole (DPP)-Based Small Molecules for Organic-Solar-Cell Applications. <i>Advanced Materials</i> , 2017 , 29, 1600013	24	223
154	Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2?,3?-d]pyrrole. <i>Macromolecules</i> , 2008 , 41, 8302-8305	5.5	219
153	Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. <i>Advanced Materials</i> , 2013 , 25, 6991-6	24	192
152	Benzotriazole-Based Acceptor and Donors, Coupled with Chlorination, Achieve a High VOC of 1.24 V and an Efficiency of 10.5% in Fullerene-Free Organic Solar Cells. <i>Chemistry of Materials</i> , 2019 , 31, 394	123947	, 175
151	Diketopyrrolopyrrole-Based Semiconducting Polymer for Photovoltaic Device with Photocurrent Response Wavelengths up to 1.1 fh. <i>Macromolecules</i> , 2010 , 43, 821-826	5.5	173
150	Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5794		158
149	Achievement of High Voc of 1.02 V for P3HT-Based Organic Solar Cell Using a Benzotriazole-Containing Non-Fullerene Acceptor. <i>Advanced Energy Materials</i> , 2017 , 7, 1602269	21.8	157
148	Simultaneously Achieved High Open-Circuit Voltage and Efficient Charge Generation by Fine-Tuning Charge-Transfer Driving Force in Nonfullerene Polymer Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1704507	15.6	147
147	Aromatic-Diimide-Based n-Type Conjugated Polymers for All-Polymer Solar Cell Applications. <i>Advanced Materials</i> , 2019 , 31, e1804699	24	138
146	Synthesis and Photovoltaic Properties of Donor Acceptor Copolymers Based on 5,8-Dithien-2-yl-2,3-diphenylquinoxaline. <i>Chemistry of Materials</i> , 2010 , 22, 4890-4895	9.6	123
145	Efficient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylene diimide-alt-bis(dithienothiophene)]. <i>Applied Physics Letters</i> , 2008 , 93, 073309	3.4	120
144	Recent progress in porphyrin-based materials for organic solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16769-16797	13	114
143	All-Polymer Solar Cell with High Near-Infrared Response Based on a Naphthodithiophene Diimide (NDTI) Copolymer. <i>ACS Macro Letters</i> , 2014 , 3, 872-875	6.6	105
142	Conjugated materials containing dithieno[3,2-b:2?,3?-d]pyrrole and its derivatives for organic and hybrid solar cell applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 64-96	13	104
141	The Introduction of Fluorine and Sulfur Atoms into Benzotriazole-Based p-Type Polymers to Match with a Benzotriazole-Containing n-Type Small Molecule: The Same-Acceptor-Strategy(Lo Realize High Open-Circuit Voltage. <i>Advanced Energy Materials</i> , 2018 , 8, 1801582	21.8	104

140	Introduction of a conjugated side chain as an effective approach to improving donor ceptor photovoltaic polymers. <i>Energy and Environmental Science</i> , 2012 , 5, 9756	35.4	104
139	Synthesis of Thieno[3,4-b]pyrazine-Based and 2,1,3-Benzothiadiazole-Based DonorAcceptor Copolymers and their Application in Photovoltaic Devices. <i>Macromolecules</i> , 2010 , 43, 2873-2879	5.5	99
138	P3HT-Based Photovoltaic Cells with a High Voc of 1.22 V by Using a Benzotriazole-Containing Nonfullerene Acceptor End-Capped with Thiazolidine-2,4-dione. <i>ACS Macro Letters</i> , 2017 , 6, 410-414	6.6	98
137	Band gap and molecular energy level control of perylene diimide-based donor copolymers for all-polymer solar cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2362		98
136	Solution-Processed Organic Solar Cells with High Open-Circuit Voltage of 1.3 V and Low Non-Radiative Voltage Loss of 0.16 V. <i>Advanced Materials</i> , 2020 , 32, e2002122	24	96
135	Synthesis and application of poly(fluorene-alt-naphthalene diimide) as an n-type polymer for all-polymer solar cells. <i>Chemical Communications</i> , 2012 , 48, 5283-5	5.8	90
134	Indolo[3,2-b]carbazole-based alternating donor\(\text{lcceptor copolymers: synthesis, properties and photovoltaic application. } \) Journal of Materials Chemistry, \(\text{2009}, 19, 7730 \)		90
133	Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers. <i>Nature Communications</i> , 2020 , 11, 833	17.4	80
132	Synthesis and Photovoltaic Properties of a Donor Acceptor Double-Cable Polythiophene with High Content of C60 Pendant. <i>Macromolecules</i> , 2007 , 40, 1868-1873	5.5	80
131	A Benzoselenadiazole-Based Low Band Gap Polymer: Synthesis and Photovoltaic Application. <i>Macromolecules</i> , 2013 , 46, 763-768	5.5	76
130	Synthesis, Hole Mobility, and Photovoltaic Properties of Cross-Linked Polythiophenes with Vinylene Terthiophene Vinylene as Conjugated Bridge. <i>Macromolecules</i> , 2007 , 40, 1831-1837	5.5	76
129	Preparation of active layers in polymer solar cells by aerosol jet printing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 4053-8	9.5	72
128	Comparison among Perylene Diimide (PDI), Naphthalene Diimide (NDI), and Naphthodithiophene Diimide (NDTI) Based n-Type Polymers for All-Polymer Solar Cells Application. <i>Macromolecules</i> , 2017 , 50, 3179-3185	5.5	70
127	Effect of Energy Alignment, Electron Mobility, and Film Morphology of Perylene Diimide Based Polymers as Electron Transport Layer on the Performance of Perovskite Solar Cells. <i>ACS Applied Materials & Discourse & Discourse Materials & Discourse & Disco</i>	9.5	69
126	Changing the Ebridge from thiophene to thieno[3,2-b]thiophene for the D-EA type polymer enables high performance fullerene-free organic solar cells. <i>Chemical Communications</i> , 2019 , 55, 6708-6	5 7 5180	68
125	Effect of side-chain end groups on the optical, electrochemical, and photovoltaic properties of side-chain conjugated polythiophenes. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 4916-4922	2.5	68
124	Effect of branched conjugation structure on the optical, electrochemical, hole mobility, and photovoltaic properties of polythiophenes. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 26062-7	3.4	66
123	Introducing Fluorine and Sulfur Atoms into Quinoxaline-Based p-type Polymers To Gradually Improve the Performance of Fullerene-Free Organic Solar Cells. <i>ACS Macro Letters</i> , 2019 , 8, 743-748	6.6	65

122	Naphthodithiophene Diimide-Based Copolymers: Ambipolar Semiconductors in Field-Effect Transistors and Electron Acceptors with Near-Infrared Response in Polymer Blend Solar Cells. <i>Macromolecules</i> , 2016 , 49, 1752-1760	5.5	65
121	Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer. <i>Applied Physics Letters</i> , 2007 , 91, 023509	3.4	62
120	Molecular Engineering of DA Copolymers Based on 4,8-Bis(4-chlorothiophen-2-yl)benzo[1,2-b:4,5-b?]dithiophene (BDT-T-Cl) for High-Performance Fullerene-Free Organic Solar Cells. <i>Macromolecules</i> , 2019 , 52, 6227-6233	5.5	61
119	Alternating copolymers of electron-rich arylamine and electron-deficient 2,1,3-benzothiadiazole: Synthesis, characterization and photovoltaic properties. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 386	5 1: 587	161
118	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25088-25101	13	61
117	Fused Perylene Diimide-Based Polymeric Acceptors for Efficient All-Polymer Solar Cells. <i>Macromolecules</i> , 2017 , 50, 7559-7566	5.5	57
116	Anatomy of the energetic driving force for charge generation in organic solar cells. <i>Nature Communications</i> , 2019 , 10, 2520	17.4	57
115	Linking Polythiophene Chains Through Conjugated Bridges: A Way to Improve Charge Transport in Polymer Solar Cells. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 793-798	4.8	54
114	Novel perylene diimide-based polymers with electron-deficient segments as the comonomer for efficient all-polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 414-422	13	54
113	Low band gap polymers for photovoltaic device with photocurrent response wavelengths over 1000nm. <i>Polymer</i> , 2013 , 54, 6501-6509	3.9	52
112	Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V. <i>Science China Chemistry</i> , 2020 , 63, 1666-1674	7.9	52
111	Over 14% efficiency nonfullerene all-small-molecule organic solar cells enabled by improving the ordering of molecular donors via side-chain engineering. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7405	5- 7 411	50
110	Quinoxaline-Containing Nonfullerene Small-Molecule Acceptors with a Linear A-A-D-A-A Skeleton for Poly(3-hexylthiophene)-Based Organic Solar Cells. <i>ACS Applied Materials & Discourted Materials & Discourted</i>	9.5	46
109	Ferrocene as a highly volatile solid additive in non-fullerene organic solar cells with enhanced photovoltaic performance. <i>Energy and Environmental Science</i> , 2020 , 13, 5117-5125	35.4	46
108	Synthesis and properties of polythiophenes with conjugated side-chains containing carbon double and triple bonds. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 2206-2214	2.5	44
107	Low-Bandgap n-Type Polymer Based on a Fused-DAD-Type Heptacyclic Ring for All-Polymer Solar Cell Application with a Power Conversion Efficiency of 10.7%. <i>ACS Macro Letters</i> , 2020 , 9, 706-712	6.6	43
106	Recent advances in PM6:Y6-based organic solar cells. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3257-3280	7.8	40
105	Non-Fullerene Acceptors With A2 = A1-D-A1 = A2 Skeleton Containing Benzothiadiazole and Thiazolidine-2,4-Dione for High-Performance P3HT-Based Organic Solar Cells. <i>Solar Rrl</i> , 2017 , 1, 170016	66 ^{7.1}	38

104	Solution-Processed Organic Field-Effect Transistors Based on Polythiophene Derivatives with Conjugated Bridges as Linking Chains. <i>Chemistry of Materials</i> , 2007 , 19, 3361-3363	9.6	37	
103	A-A-D-A-A Type Non-Fullerene Acceptors with 2-(1,1-Dicyanomethylene)rhodanine as the Terminal Groups for Poly(3-hexylthiophene)-Based Organic Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 34427-34434	9.5	37	
102	High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors. <i>ACS Applied Materials & Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors</i> . <i>ACS Applied Materials & Description</i> . <i>Interfaces</i> , 2018 , 10, 15962-15970	9.5	35	
101	Side chain engineering of quinoxaline-based small molecular nonfullerene acceptors for high-performance poly(3-hexylthiophene)-based organic solar cells. <i>Science China Chemistry</i> , 2020 , 63, 254-264	7.9	35	
100	First-principles theoretical designing of planar non-fullerene small molecular acceptors for organic solar cells: manipulation of noncovalent interactions. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 212	8 ³ 2139	9 33	
99	Improved Efficiency in All-Small-Molecule Organic Solar Cells with Ternary Blend of Nonfullerene Acceptor and Chlorinated and Nonchlorinated Donors. <i>ACS Applied Materials & Donors and Chlorinated Bolory and Chlory and Chlorinated Bolory and Chlorinated Bolory and Chlorinated Bolory and Chlory and Chlo</i>	9.5	33	
98	Synthesis, hole mobility, and photovoltaic properties of two alternating poly[3-(hex-1-enyl)thiophene-co-thiophene]s. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 629-638	2.5	32	
97	Conjugated Polymers Based on 1,3-Dithien-2-yl-thieno[3,4-c]pyrrole-4,6-dione: Synthesis, Characterization, and Solvent Effects on Photovoltaic Performance. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 2608-2614	3.8	31	
96	Introducing Four 1,1-Dicyanomethylene-3-indanone End-Capped Groups as an Alternative Strategy for the Design of Small-Molecular Nonfullerene Acceptors. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 29122-29128	3.8	31	
95	A comparison of n-type copolymers based on cyclopentadithiophene and naphthalene diimide/perylene diimides for all-polymer solar cell applications. <i>Polymer Chemistry</i> , 2015 , 6, 7594-7602	4.9	30	
94	Synthesis and Photovoltaic Properties of Donor Acceptor Copolymer Based on Dithienopyrrole and Thienopyrroledione. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 305-310	2.6	30	
93	Benzothiadiazole-based non-fullerene acceptors. <i>Nano Energy</i> , 2021 , 87, 106174	17.1	30	
92	Planar Benzofuran Inside-Fused Perylenediimide Dimers for High V Fullerene-Free Organic Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 4203-4210	9.5	29	
91	Effects of Oxygen Atoms Introduced at Different Positions of Non-Fullerene Acceptors in the Performance of Organic Solar Cells with Poly(3-hexylthiophene). <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 1094-1102	9.5	28	
90	A2A1DA1A2 type non-fullerene acceptors based on methoxy substituted benzotriazole with three different end-capped groups for P3HT-based organic solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10902-10909	7.1	28	
89	Pyrene-based aggregation-induced emission luminogens (AIEgen): structure correlated with particle size distribution and mechanochromism. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6932-6940	7.1	27	
88	Incorporation of Thienylenevinylene and Triphenylamine Moieties into Polythiophene Side Chains for All-Polymer Photovoltaic Applications. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5879-5885	3.8	27	
87	A perylenediimide dimer containing an asymmetric Ebridge and its fused derivative for fullerene-free organic solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2580-2587	7.1	26	

86	Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50. <i>Nanoscale</i> , 2018 , 10, 3245-3253	7.7	26
85	A novel thiazole based acceptor for fullerene-free organic solar cells. <i>Dyes and Pigments</i> , 2018 , 149, 47	0-4.74	26
84	All-Polymer Solar Cells from Perylene Diimide Based Copolymers: Material Design and Phase Separation Control. <i>Angewandte Chemie</i> , 2011 , 123, 2851-2855	3.6	25
83	Polythiophene derivative with the simplest conjugated-side-chain of alkenyl: synthesis and applications in polymer solar cells and field-effect transistors. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 13476-82	3.4	25
82	Electroluminescence and photovoltaic properties of poly(p-phenylene vinylene) derivatives with dendritic pendants. <i>Journal of Applied Polymer Science</i> , 2008 , 107, 514-521	2.9	25
81	Modulating the Symmetry of Benzodithiophene by Molecular Tailoring for the Application in Naphthalene Diimide-Based N-Type Photovoltaic Polymers. <i>Solar Rrl</i> , 2018 , 2, 1700230	7.1	24
8o	PTB7-Th based organic solar cell with a high V oc of 1.05 V by modulating the LUMO energy level of benzotriazole-containing non-fullerene acceptor. <i>Science Bulletin</i> , 2017 , 62, 1275-1282	10.6	24
79	Crumple Durable Ultraflexible Organic Solar Cells with an Excellent Power-per-Weight Performance. <i>Advanced Functional Materials</i> , 2021 , 31, 2102694	15.6	24
78	Polymer bulk heterojunction photovoltaic devices with multilayer structures prepared by thermal lamination. <i>ACS Applied Materials & Description (Materials & Description)</i> , 1, 2703-6	9.5	23
77	Modulation of Three p-Type Polymers Containing a Fluorinated-Thiophene-Fused-Benzotriazole Unit To Pair with a Benzotriazole-Based Non-fullerene Acceptor for High VOC Organic Solar Cells. <i>Macromolecules</i> , 2019 , 52, 8625-8630	5.5	22
76	The effect of alkyl chain branching positions on the electron mobility and photovoltaic performance of naphthodithiophene diimide (NDTI)-based polymers. <i>Science China Chemistry</i> , 2019 , 62, 1649-1655	7.9	22
75	A small molecular electron acceptor based on asymmetric hexacyclic core of thieno[1,2-b]indaceno[5,6-b?]thienothiophene for efficient fullerene-free polymer solar cells. <i>Science Bulletin</i> , 2018 , 63, 845-852	10.6	22
74	Controlling the Cyano-Containing A2 Segments in A2-A1-D-A1-A2 Type Non-Fullerene Acceptors to Combine with a Benzotriazole-Based p-Type Polymer: Bame-Acceptor-StrategyIfor High VOC Organic Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1800332	7.1	21
73	Tuning the optoelectronic properties of vinylene linked perylenediimide dimer by ring annulation at the inside or outside bay positions for fullerene-free organic solar cells. <i>Journal of Energy Chemistry</i> , 2020 , 40, 112-119	12	21
72	Design and Synthesis of a Novel n-Type Polymer Based on Asymmetric Rylene Diimide for the Application in All-Polymer Solar Cells. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1700715	4.8	20
71	Synthesis and properties of DA copolymers based on dithienopyrrole and benzothiadiazole with various numbers of thienyl units as spacers. <i>Polymer Chemistry</i> , 2014 , 5, 6797-6803	4.9	20
7º	Comparison of Three n-Type Copolymers Based on Benzodithiophene and Naphthalene Diimide/Perylene Diimide/Fused Perylene Diimides for All-Polymer Solar Cells Application. <i>ACS Applied Materials & Diagram (Comparison of Comparison of Comparis</i>	9.5	19
69	Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor. ACS Applied Materials & Discrete Precursor. ACS Appl	9.5	19

68	A low band gap n-type polymer based on dithienosilole and naphthalene diimide for all-polymer solar cells application. <i>Polymer</i> , 2015 , 63, 164-169	3.9	18
67	Benzotriazole-Based p-Type Polymers with Thieno[3,2-b]thiophene Bridges and Fluorine Substituents To Realize High VOC. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 906-913	4.3	17
66	Utilizing Benzotriazole and Indacenodithiophene Units to Construct Both Polymeric Donor and Small Molecular Acceptors to Realize Organic Solar Cells With High Open-Circuit Voltages Beyond 1.2 V. <i>Frontiers in Chemistry</i> , 2018 , 6, 147	5	17
65	An amorphous N-type polymer based on perylenediimide and selenophene for all-polymer solar cells application. <i>Materials Today Communications</i> , 2015 , 4, 16-21	2.5	16
64	Synthesis, characterization and photovoltaic properties of thiophene copolymers containing conjugated side-chain. <i>European Polymer Journal</i> , 2007 , 43, 855-861	5.2	16
63	Spatial Distribution Recast for Organic Bulk Heterojunctions for High-Performance All-Inorganic Perovskite/Organic Integrated Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2000851	21.8	16
62	A-DA?D-A-Type Non-fullerene Acceptors Containing a Fused Heptacyclic Ring for Poly(3-hexylthiophene)-Based Polymer Solar Cells. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 24616-246	5 <u>3</u> 28	16
61	Indacenodithieno[3,2-b]thiophene-Based Wide Bandgap D-FA Copolymer for Nonfullerene Organic Solar Cells. <i>ACS Macro Letters</i> , 2019 , 8, 1599-1604	6.6	16
60	Expanding the Light Harvesting of CsPbIBr to Near Infrared by Integrating with Organic Bulk Heterojunction for Efficient and Stable Solar Cells. <i>ACS Applied Materials & Distriction Action Section</i> , 11, 379	915-37	998
59	Effects of Inserting Thiophene as a Bridge on the Properties of Naphthalene Diimide-alt-Fused Thiophene Copolymers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 44070-44078	9.5	15
58	The first thieno[3,4-b]pyrazine based small molecular acceptor with a linear A-A-D-A-A skeleton for fullerene-free organic solar cells with a high V of 1.05 V. <i>Chemical Communications</i> , 2018 , 54, 10770-107	7 38	15
57	Fullerene-free organic photovoltaics based on unconventional material combination: a molecular donor and polymeric acceptors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22325-22331	13	14
56	Fabrication of High Organic Solar Cells with a Non-Halogenated Solvent and the Effect of Substituted Groups for "Same-A-Strategy" Material Combinations. <i>ACS Applied Materials & Material</i>	9.5	14
55	Wide Band Gap Non-Fullerene Small Molecular Acceptors Containing Spirobifluorene and Benzotriazole with Three Different End-Capped Groups for P3HT-Based Organic Solar Cells. <i>Chinese Journal of Chemistry</i> , 2018 , 36, 392-398	4.9	13
54	Isatylidene malononitrile derived acceptors for fullerene free organic solar cells. <i>Dyes and Pigments</i> , 2018 , 151, 102-109	4.6	13
53	The effect of conjugated Ebridge and fluorination on the properties of asymmetric-building-block-containing polymers (ABC polymers) based on dithienopyran donor and benzothiadiazole acceptors. <i>Polymer Chemistry</i> , 2017 , 8, 5396-5406	4.9	13
52	Gradually modulating the three parts of D-EA type polymers for high-performance organic solar cells. <i>Journal of Energy Chemistry</i> , 2021 , 62, 532-537	12	13
51	18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. <i>Nano Today</i> , 2021 , 41, 101289	17.9	13

50	Positioned substituent effect on self-assembly behaviors of perylene diimide derivatives on graphite. <i>Journal of Colloid and Interface Science</i> , 2017 , 504, 58-67	9.3	12
49	Poly(quinoxaline vinylene) With Conjugated Phenylenevinylene Side Chain: A Potential Polymer Acceptor With Broad Absorption Band. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 1294-1300	2.6	12
48	Utilizing an electron-deficient thieno[3,4-c]pyrrole-4,6-dione (TPD) unit as a Ebridge to improve the photovoltaic performance of ADA type acceptors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15981-15984	7.1	12
47	Enhanced open circuit voltage of small molecule acceptors containing angular-shaped indacenodithiophene units for P3HT-based organic solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12347-12354	7.1	12
46	The first application of isoindigo-based polymers in non-fullerene organic solar cells. <i>Science China Chemistry</i> , 2020 , 63, 1262-1271	7.9	11
45	Effect of fluorination and symmetry on the properties of polymeric photovoltaic materials based on an asymmetric building block. <i>RSC Advances</i> , 2016 , 6, 90051-90060	3.7	11
44	Wide-Band-Gap Phthalimide-Based D-EA Polymers for Nonfullerene Organic Solar Cells: The Effect of Conjugated Bridge from Thiophene to Thieno[3,2-b]thiophene. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 230-236	3.8	11
43	Annealing-free efficient organic solar cells via an alkylbenzene side-chain strategy of small-molecule electron acceptors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22155-22162	13	10
42	Gradual Fluorination on the Phenyl Side Chains for Benzodithiophene-Based Linear Polymers to Improve the Photovoltaic Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 38451-38459	9.5	10
41	Ternary blend strategy in benzotriazole-based organic photovoltaics for indoor application. <i>Green Energy and Environment</i> , 2020 ,	5.7	10
40	Wide Band Gap Photovoltaic Polymer Based on Pyrrolo[3,4-f]benzotriazole-5,7-dione (TzBI) with Ultrahigh VOC Beyond 1.25 V. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 19492-19498	3.8	10
39	Utilizing Benzotriazole-Fused DAD-Type Heptacyclic Ring to Construct n-Type Polymer for All-Polymer Solar Cell Application. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4217-4223	6.1	10
38	Isatin-derived non-fullerene acceptors towards high open circuit voltage solar cells. <i>Dyes and Pigments</i> , 2019 , 162, 898-904	4.6	10
37	End Group Engineering on the Side Chains of Conjugated Polymers toward Efficient Non-Fullerene Organic Solar Cells. <i>ACS Applied Materials & English (Materials & English)</i> 12, 6151-6158	9.5	9
36	A FeNi5P4/FeNi2P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 1221-1229	13	9
35	Inside-fused perylenediimide dimers with planar structures for high-performance fullerene-free organic solar cells. <i>RSC Advances</i> , 2017 , 7, 13749-13753	3.7	8
34	Copolymers of Thiophene and Cyano-Substituted Phenylene: Facile Tuning of Electronic Energy Levels and their Photovoltaic Application. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 431-438	2.6	8
33	Imidazolium Ionic Liquid as Organic Spacer for Tuning the Excitonic Structure of 2D Perovskite Materials. <i>ACS Energy Letters</i> , 2020 , 5, 3617-3627	20.1	8

32	Synthesis of 1-Formyl-3-bromo-thieno[3,4-c]pyrrole-4,6-dione and the Application in A2A1DA1A2 Type Non-Fullerene Acceptor. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 9795-9801	3.8	8	
31	Exploring thieno[3,4-c]pyrrole-4,6-dione combined thiophene as Ebridge to construct non-fullerene acceptors with high VOC beyond 1.0[V. <i>Dyes and Pigments</i> , 2020 , 178, 108335	4.6	7	
30	Ring Fusion of Thiophenellinylenelliniophene (TVT) Benefits Both Fullerene and Non-Fullerene Polymer Solar Cells. <i>Macromolecules</i> , 2018 , 51, 4598-4607	5.5	7	
29	A thieno[3,4-b]pyrazine-based A2A1DA1A2 type low bandgap non-fullerene acceptor with 1,1-dicyanomethylene-3-indanone (IC) as the terminal group. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8820-8824	7.1	7	
28	Exploring a Fused 2-(Thiophen-2-yl)thieno[3,2-]thiophene (T-TT) Building Block to Construct n-Type Polymer for High-Performance All-Polymer Solar Cells. <i>ACS Applied Materials & Description</i> , 11, 42412-42419	9.5	7	
27	Chlorination of dithienobenzodithiophene (DTBDT) based polymers to simultaneously improve the VOC, JSC and FF of non-fullerene organic solar cells. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 5665-5673	5.8	7	
26	Side chain engineering of copolymers based on benzotriazole (BTA) and dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophenes (DTBDT) enables a high PCE of 14.6. <i>Nanotechnology</i> , 2021 ,	3.4	7	
25	Theoretical and experimental study of electron-deficient core substitution effect of diketopyrrolopyrrole derivatives on optoelectrical and charge transport properties. <i>Chemical Physics</i> , 2018 , 500, 67-73	2.3	7	
24	~1.2 V open-circuit voltage from organic solar cells. <i>Journal of Semiconductors</i> , 2021 , 42, 070202	2.3	7	
23	Tricyclic or Pentacyclic D Units: Design of D-EA-Type Copolymers for High Organic Photovoltaic Cells. <i>ACS Applied Materials & Design of Design of Description (Color of Applied Materials & Design of Design of Description)</i>	9.5	6	
22	Poly(4-hexyloxythiazole): A new low band gap semiconductor for polymer electronics. <i>Synthetic Metals</i> , 2014 , 196, 139-144	3.6	5	
21	Progress of Organic Photovoltaic Materials Based on Indacenodithiophene and Its Derivatives. <i>Chinese Journal of Organic Chemistry</i> , 2016 , 36, 2786	3	5	
20	Fluorination of the Quinoxaline-Based p-Type Polymer and n-Type Small Molecule for High VOC Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 10876-10882	3.8	5	
19	Effects of BTA2 as the third component on the charge carrier generation and recombination behavior of PTB7:PC71BM photovoltaic system. <i>Frontiers of Chemical Science and Engineering</i> , 2021 , 15, 127-137	4.5	4	
18	Modulating the molecular orientation of linear benzodifuran-based isomeric polymers by exchanging the positions of chlorine and fluorine atoms. <i>Nano Energy</i> , 2022 , 99, 107413	17.1	4	
17	Side-chain effect in ethenylene fused thiophene-vinylene-thiophene (ETVT) based photovoltaic polymers. <i>Polymer</i> , 2019 , 167, 31-39	3.9	3	
16	Medium Bandgap D-A Type Photovoltaic Polymers Based on an Asymmetric Dithienopyran Donor and a Benzotriazole Acceptor. <i>Polymers</i> , 2017 , 9,	4.5	3	
15	Effects of block length in copolymers based on regioregular oligothiophenes linked with electron-accepting units. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 658-63	4.8	3	

14	Study on the side chain effect of A2-A1-D-A1-A2 type non-fullerene acceptors matched with P3HT. <i>Dyes and Pigments</i> , 2022 , 197, 109949	4.6	3
13	Effects of Halogenation on the Benzotriazole Unit of Non-Fullerene Acceptors in Organic Solar Cells with High Voltages. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 ,	9.5	3
12	Fluorination: An Effective Molecular Design Strategy for Efficient Photovoltaic Materials. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2018 , 34, 1239-1249	3.8	3
11	The optimization of Ebridge for trialkylsilyl substituted D-EA photovoltaic polymers. <i>Dyes and Pigments</i> , 2021 , 194, 109609	4.6	3
10	Optimized active layer morphology via side-chain atomic substituents to achieve efficient and stable all-polymer solar cells. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 9515-9523	7.1	3
9	PTB7-Th-Based Organic Photovoltaic Cells with a High of over 1.0 V Fluorination and Side Chain Engineering of Benzotriazole-Containing Nonfullerene Acceptors <i>ACS Applied Materials & Interfaces</i> , 2022 ,	9.5	3
8	Non-Fullerene Acceptors With A2 = A1-D-A1 = A2 Skeleton Containing Benzothiadiazole and Thiazolidine-2,4-Dione for High-Performance P3HT-Based Organic Solar Cells (Solar RRL 112017). <i>Solar Rrl</i> , 2017 , 1, 1770142	7.1	2
7	Introducing methoxy or fluorine substitutions on the conjugated side chain to reduce the voltage loss of organic solar cells. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 11163-11171	7.1	2
6	Photooxidation Analysis of Two Isomeric Nonfullerene Acceptors: A Systematic Study of Conformational, Morphological, and Environmental Factors. <i>Solar Rrl</i> , 2021 , 5, 2000704	7.1	2
5	The subtle Structure Modulation of A -A -D-A -A type Nonfullerene Acceptors Extends the Photoelectric Response for High Voltage Organic Photovoltaic Cells <i>Macromolecular Rapid Communications</i> , 2022 , e2100810	4.8	1
4	Gradual chlorination at different positions of D-EA copolymers based on benzodithiophene and isoindigo for organic solar cells. <i>Materials Reports Energy</i> , 2021 , 100065		1
3	Modulating the middle and end-capped units of A2-A1-D-A1-A2 type non-fullerene acceptors for high VOC organic solar cells. <i>Organic Electronics</i> , 2021 , 95, 106195	3.5	1
2	Quasi-Bilayer All-Small-Molecule Solar Cells Based on a Chlorophyll Derivative and Non-Fullerene Materials with Untraditional Energy Alignments. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 4807-4814	3.8	1
1	Application of A-DA'D-A non-fullerene acceptor with Benzotriazole Core in poly(3-hexylthiophene)-based organic solar cells. <i>Dyes and Pigments</i> , 2022 , 110375	4.6	