Seokhwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7746701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental investigation on combustion and particulate emissions of the high compressed natural gas reactivity controlled compression ignition over wide ranges of intake conditions in a multi-cylinder engine using a two-stage intake boost system. Fuel Processing Technology, 2022, 228, 107161.	3.7	7
2	Effect of multi-angle diesel injector nozzle on emission and efficiency of natural gas/diesel dual-fuel combustion in compression ignition engine. Fuel, 2022, 316, 123442.	3.4	13
3	Characterization of brake particles emitted from non-asbestos organic and low-metallic brake pads under normal and harsh braking conditions. Atmospheric Environment, 2022, 278, 119089.	1.9	7
4	Chemical Leaching from Tire Wear Particles with Various Treadwear Ratings. International Journal of Environmental Research and Public Health, 2022, 19, 6006.	1.2	9
5	Real-time detection of vehicle-originated condensable particulate matter through thermodenuder integrated aerosol measurement method at tailpipes. Environmental Research, 2022, 212, 113487.	3.7	3
6	Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: An experimental analysis. Science of the Total Environment, 2022, 842, 156961.	3.9	24
7	Effect of treadwear grade on the generation of tire PM emissions in laboratory and real-world driving conditions. Science of the Total Environment, 2022, 838, 156548.	3.9	8
8	Development of Dust Collectors to Reduce Brake Wear PM Emissions. Atmosphere, 2022, 13, 1121.	1.0	2
9	Characteristics of non-methane hydrocarbons and methane emissions in exhaust gases under natural-gas/diesel dual-fuel combustion. Fuel, 2021, 290, 120009.	3.4	15
10	Characteristics of brake wear particle (BWP) emissions under various test driving cycles. Wear, 2021, 480-481, 203936.	1.5	11
11	Diesel injector nozzle optimization for high CNG substitution in a dual-fuel heavy-duty diesel engine. Fuel, 2020, 262, 116607.	3.4	17
12	Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel. Energy, 2020, 206, 118201.	4.5	19
13	Characteristic of Energy Fractions and Emissions under Natural Gas/Diesel Dual-Fuel Heavy-Duty Engine in Terms of the Combustion Parameters. International Journal of Automotive Technology, 2020, 21, 103-113.	0.7	6
14	Characteristic of Brake Wear Particles under Various Test Driving Cycles. Journal of Korean Society for Atmospheric Environment, 2020, 36, 346-359.	0.2	3
15	Study on Application of Compression Ignition Engine Fuelled with Coffee Ground Pyrolysis Oil as Alternative Diesel Fuel. Transactions of the Korean Society of Automotive Engineers, 2020, 28, 291-299.	0.1	0
16	Measuring Method of Non-exhaust PM Generated by Brake Wear. Transactions of the Korean Society of Automotive Engineers, 2020, 28, 701-710.	0.1	1
17	Application of blended fuel containing coffee ground pyrolysis oil in a diesel generator. Fuel, 2019, 256, 115998.	3.4	3
18	A Feasibility Study of Using Coffee Ground Oil-Butanol Blended Fuel in a Diesel Tractor. Transactions of the Korean Society of Automotive Engineers, 2019, 27, 77-84.	0.1	0

SEOKHWAN LEE

#	Article	IF	CITATIONS
19	Effect of Various Diesel Injection Timings on Combustion and Emissions Characteristics as Different Compression Ratio and Bowl-shaped Pistons in a Heavy-duty Natural Gas/Diesel Dual-fuel Engine. Transactions of the Korean Society of Automotive Engineers, 2019, 27, 411-418.	0.1	0
20	Effect of Tire Treadwear Rate on the Physical Characterization of Tire Wear Particles in Laboratory Measurements. Journal of Korean Society for Atmospheric Environment, 2019, 35, 741-756.	0.2	2
21	Experimental investigation on the performance and emissions characteristics of ethanol/diesel dual-fuel combustion. Fuel, 2018, 220, 72-79.	3.4	55
22	Morphological Change and Number-Size Distributions of Particulate Matter (PM) from a Diesel Generator Operated with Wood Pyrolysis Oil-Butanol Blended Fuel. International Journal of Automotive Technology, 2018, 19, 413-420.	0.7	3
23	Characteristics of Tire Wear Particles Generated by a Tire Simulator under Various Driving Conditions. Environmental Science & Technology, 2018, 52, 12153-12161.	4.6	77
24	Characteristics of tire wear particles generated in a laboratory simulation of tire/road contact conditions. Journal of Aerosol Science, 2018, 124, 30-40.	1.8	58
25	Effect of the Inert Gas Addition on the Combustion and Emissions Characteristics of Natural Gas/Diesel Dual-fuel Engine. Transactions of the Korean Society of Automotive Engineers, 2018, 26, 783-790.	0.1	2
26	Combustion and Emission Characteristics of Wood Pyrolysis Oil and N-Butanol-Blended Fuel in a Diesel Engine. Green Energy and Technology, 2018, , 171-187.	0.4	1
27	A Study on the Influence of Tire Rolling Resistance Coefficient on Vehicle Fuel Consumption and CO2 Emissions. Transactions of the Korean Society of Automotive Engineers, 2018, 26, 402-406.	0.1	2
28	Performance and emission characteristics of a DI diesel engine operated with diesel/DEE blended fuel. Applied Thermal Engineering, 2017, 121, 454-461.	3.0	63
29	Laboratory study of the generation of nanoparticles from tire tread. Aerosol Science and Technology, 2017, 51, 188-197.	1.5	18
30	A Study on Combustion and Emission Characteristics of a Diesel Engine Fuelled with Premixed Gasoline/Pilot Diesel. Transactions of the Korean Society of Automotive Engineers, 2017, 25, 326-335.	0.1	5
31	Performance and Emission Characteristics of an IDI Diesel Generator Fueled with Wood Pyrolysis Oil/Butanol Blended Fuels. Transactions of the Korean Society of Automotive Engineers, 2017, 25, 380-388.	0.1	2
32	Fabrication of thermoelectric modules and heat transfer analysis on internal plate fin structures of a thermoelectric generator. Energy Conversion and Management, 2016, 124, 470-479.	4.4	46
33	A Feasibility Study of Using Pyrolysis Oil/Butanol Blended Fuel in a DI Diesel Engine. , 2015, , .		3
34	On-road chasing and laboratory measurements of exhaust particle emissions of diesel vehicles equipped with aftertreatment technologies (DPF, urea-SCR). International Journal of Automotive Technology, 2015, 16, 551-559.	0.7	32
35	Feasibility study of using wood pyrolysis oil–ethanol blended fuel with diesel pilot injection in a diesel engine. Fuel, 2015, 162, 65-73.	3.4	25
36	Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a DI diesel engine. International Journal of Automotive Technology, 2015, 16, 903-912.	0.7	36

SEOKHWAN LEE

#	Article	IF	CITATIONS
37	Performance and emission characteristics of a high-compression-ratio diesel engine fueled with wood pyrolysis oil-butanol blended fuels. Energy, 2015, 93, 2241-2250.	4.5	29
38	Performance and emission characteristics of a diesel engine operated with wood pyrolysis oil. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2014, 228, 180-189.	1.1	32
39	On-road and laboratory investigations on non-exhaust ultrafine particles from the interaction between the tire and road pavement under braking conditions. Atmospheric Environment, 2014, 97, 195-205.	1.9	46
40	On-road chasing measurement of exhaust particle emissions from diesel, CNG, LPG, and DME-fueled vehicles using a mobile emission laboratory. International Journal of Automotive Technology, 2014, 15, 543-551.	0.7	35
41	A Feasibility Study of Using Diesel/Biodiesel-Pyrolysis Oil-Butanol Blends in a Diesel Engine. Transactions of the Korean Society of Automotive Engineers, 2014, 22, 116-125.	0.1	1
42	Properties of roadway particles from interaction between the tire and road pavement. International Journal of Automotive Technology, 2013, 14, 163-173.	0.7	39
43	Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements. Science of the Total Environment, 2013, 458-460, 273-282.	3.9	135
44	Performance and Emission Characteristics of a Diesel Engine Fueled with Pyrolysis Oil-Ethanol Blend with Diesel and Biodiesel Pilot Injection. SAE International Journal of Fuels and Lubricants, 2013, 6, 785-793.	0.2	14
45	Characterization of Coarse, Fine, and Ultrafine Particles Generated from the Interaction between the Tire and the Road Pavement. Journal of Korean Society for Atmospheric Environment, 2013, 29, 656-667.	0.2	2
46	Performance and emission characteristics of a CI engine operated with n-Butane blended DME fuel. Applied Thermal Engineering, 2011, 31, 1929-1935.	3.0	38
47	Effect of n-Butane and propane on performance and emission characteristics of an SI engine operated with DME-blended LPG fuel. Fuel, 2011, 90, 1674-1680.	3.4	50
48	A Study on the Performance and Emissions Characteristics of a DI Compression Ignition Engine Operated With LPG and DTBP Blending Fuels. , 2011, , .		0
49	Performance and emission characteristics of an SI engine operated with DME blended LPG fuel. Fuel, 2009, 88, 1009-1015.	3.4	55
50	Design of a heat exchanger to reduce the exhaust temperature in a spark-ignition engine. International Journal of Thermal Sciences, 2008, 47, 468-478.	2.6	26
51	The application of an exhaust heat exchanger to protect the catalyst and improve the fuel economy in a spark-ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2007, 221, 621-628.	1.1	7
52	Effect of Design Parameters on the Performance of Finned Exhaust Heat Exchanger. , 2003, , .		2
53	Effects of Engine Operating Conditions on Catalytic Converter Temperature in an SI Engine. , 0, , .		25
54	Quantification of Thermal Shock in a Piezoelectric Pressure Transducer. , 0, , .		14

#	Article	IF	CITATIONS
55	Combustion and Emission Characteristics in a Direct Injection LPG/Gasoline Spark Ignition Engine. , 0, , \cdot		23