Paul J Utz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7746294/publications.pdf

Version: 2024-02-01

106	9,013	48 h-index	91
papers	citations		g-index
114	114	114	13668 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity. Science Translational Medicine, 2022, 14, eabm7853.	5.8	71
2	High Interferon Signature Leads to Increased STAT1/3/5 Phosphorylation in PBMCs From SLE Patients by Single Cell Mass Cytometry. Frontiers in Immunology, 2022, 13, 833636.	2.2	5
3	Cytokine signatures differentiate systemic sclerosis patients at high versus low risk for pulmonary arterial hypertension. Arthritis Research and Therapy, 2022, 24, 39.	1.6	7
4	Translating science to medicine: The case for physician-scientists. Science Translational Medicine, 2022, 14, eabg7852.	5.8	11
5	Antiâ€phospholipid antibodies are elevated and functionally active in chronic rhinosinusitis with nasal polyps. Clinical and Experimental Allergy, 2022, 52, 954-964.	1.4	4
6	KIR ⁺ CD8 ⁺ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science, 2022, 376, eabi9591.	6.0	113
7	A GMR-based assay for quantification of the human response to influenza. Biosensors and Bioelectronics, 2022, 205, 114086.	5.3	11
8	Repression of CTSG, ELANE and PRTN3-mediated histone H3 proteolytic cleavage promotes monocyte-to-macrophage differentiation. Nature Immunology, 2021, 22, 711-722.	7. O	36
9	Innovations in MD-only physician-scientist training: experiences from the Burroughs Wellcome Fund physician-scientist institutional award initiative. Journal of Clinical Investigation, 2021, 131, .	3.9	4
10	The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell, 2021, 184, 3915-3935.e21.	13.5	133
11	Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature, 2021, 596, 410-416.	13.7	313
12	New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nature Communications, 2021, 12, 5417.	5.8	286
13	The intersection of COVID-19 and autoimmunity. Journal of Clinical Investigation, 2021, 131, .	3.9	138
14	Aberrant Histone Landscape in Juvenile Myelomonocytic Leukemia. Blood, 2021, 138, 4328-4328.	0.6	0
15	Unique Sjögren's syndrome patient subsets defined by molecular features. Rheumatology, 2020, 59, 860-868.	0.9	41
16	Complement C4A Regulates Autoreactive B Cells in Murine Lupus. Cell Reports, 2020, 33, 108330.	2.9	13
17	Autoantibody-positive healthy individuals with lower lupus risk display a unique immune endotype. Journal of Allergy and Clinical Immunology, 2020, 146, 1419-1433.	1.5	27
18	Integrated, multicohort analysis reveals unified signature of systemic lupus erythematosus. JCI Insight, 2020, 5, .	2.3	36

#	Article	IF	CITATIONS
19	Mycophenolate mofetil reduces STAT3 phosphorylation in systemic lupus erythematosus patients. JCI Insight, 2019, 4, .	2.3	34
20	Mining the Proteome Associated with Rheumatic and Autoimmune Diseases. Journal of Proteome Research, 2019, 18, 4231-4239.	1.8	11
21	Sex Differences in the Blood Transcriptome Identify Robust Changes in Immune Cell Proportions with Aging and Influenza Infection. Cell Reports, 2019, 29, 1961-1973.e4.	2.9	70
22	Antigen-specific tolerance to self-antigens in protein replacement therapy, gene therapy and autoimmunity. Current Opinion in Immunology, 2019, 61, 46-53.	2.4	30
23	Single-cell technologies — studying rheumatic diseases one cell at a time. Nature Reviews Rheumatology, 2019, 15, 340-354.	3.5	30
24	Distinct phenotype of CD4+ T cells driving celiac disease identified in multiple autoimmune conditions. Nature Medicine, 2019, 25, 734-737.	15.2	112
25	AIRE expression controls the peripheral selection of autoreactive B cells. Science Immunology, 2019, 4,	5.6	65
26	Quantification of cDNA on GMR biosensor array towards point-of-care gene expression analysis. Biosensors and Bioelectronics, 2019, 130, 338-343.	5.3	31
27	Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell, 2018, 173, 1385-1397.e14.	13.5	250
28	Single-cell epigenetics – Chromatin modification atlas unveiled by mass cytometry. Clinical Immunology, 2018, 196, 40-48.	1.4	29
29	KLRD1-expressing natural killer cells predict influenza susceptibility. Genome Medicine, 2018, 10, 45.	3.6	51
30	Neutralizing Anti-Cytokine Autoantibodies Against Interferon- \hat{l}_{\pm} in Immunodysregulation Polyendocrinopathy Enteropathy X-Linked. Frontiers in Immunology, 2018, 9, 544.	2.2	46
31	Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Research and Therapy, 2018, 20, 139.	1.6	93
32	Smith-Magenis Syndrome Patients Often Display Antibody Deficiency but Not Other Immune Pathologies. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1344-1350.e3.	2.0	11
33	Proteomic Analysis of Sera from Individuals with Diffuse Cutaneous Systemic Sclerosis Reveals a Multianalyte Signature Associated with Clinical Improvement during Imatinib Mesylate Treatment. Journal of Rheumatology, 2017, 44, 631-638.	1.0	19
34	Clonal Evolution of Autoreactive Germinal Centers. Cell, 2017, 170, 913-926.e19.	13.5	118
35	Identification of Candidate Tolerogenic CD8 ⁺ T Cell Epitopes for Therapy of Type 1 Diabetes in the NOD Mouse Model. Journal of Diabetes Research, 2016, 2016, 1-12.	1.0	9
36	Anti-Insulin Immune Responses Are Detectable in Dogs with Spontaneous Diabetes. PLoS ONE, 2016, 11, e0152397.	1.1	8

#	Article	IF	CITATIONS
37	Nucleic Acid-Targeting Pathways Promote Inflammation in Obesity-Related Insulin Resistance. Cell Reports, 2016, 16, 717-730.	2.9	77
38	Multiplex giant magnetoresistive biosensor microarrays identify interferon-associated autoantibodies in systemic lupus erythematosus. Scientific Reports, 2016, 6, 27623.	1.6	30
39	Portable, one-step, and rapid GMR biosensor platform with smartphone interface. Biosensors and Bioelectronics, 2016, 85, 1-7.	5.3	111
40	Autoantibodyâ€Positive Healthy Individuals Display Unique Immune Profiles That May Regulate Autoimmunity. Arthritis and Rheumatology, 2016, 68, 2492-2502.	2.9	79
41	High-Resolution Analysis of Antibodies to Post-Translational Modifications Using Peptide Nanosensor Microarrays. ACS Nano, 2016, 10, 10652-10660.	7.3	21
42	Protein microarrays identify disease-specific anti-cytokine autoantibody profiles in the landscape of immunodeficiency. Journal of Allergy and Clinical Immunology, 2016, 137, 204-213.e3.	1.5	17
43	Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity. JCI Insight, 2016, 1, e89073.	2.3	57
44	Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Research and Therapy, 2015, 17, 159.	1.6	104
45	Autoantigen microarrays reveal autoantibodies associated with proliferative nephritis and active disease in pediatric systemic lupus erythematosus. Arthritis Research and Therapy, 2015, 17, 162.	1.6	44
46	Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. Journal of Allergy and Clinical Immunology, 2015, 136, 1326-1336.	1.5	66
47	Tetramers reveal IL-17–secreting CD4 ⁺ T cells that are specific for U1-70 in lupus and mixed connective tissue disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3044-3049.	3.3	22
48	Regulation of ribosomal RNA synthesis in T cells: requirement for GTP and Ebp1. Blood, 2015, 125, 2519-2529.	0.6	32
49	Protein Microarrays: A New Tool for the Study of Autoantibodies in Immunodeficiency. Frontiers in Immunology, 2015, 6, 138.	2.2	27
50	Mapping epitopes of U1-70K autoantibodies at single-amino acid resolution. Autoimmunity, 2015, 48, 513-523.	1.2	11
51	Ly108 expression distinguishes subsets of invariant NKT cells that help autoantibody production and secrete IL-21 from those that secrete IL-17 in lupus prone NZB/W mice. Journal of Autoimmunity, 2014, 50, 87-98.	3.0	20
52	Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Molecular Systems Biology, 2013, 9, 659.	3.2	173
53	Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Research, 2013, 6, 113-120.	5.8	42
54	Brief Report: Interferonâ€Î± Induction and Detection of Antiâ€Ro, Antiâ€La, Antiâ€Sm, and Antiâ€RNP Autoantibodies by Autoantigen Microarray Analysis in Juvenile Dermatomyositis. Arthritis and Rheumatism, 2013, 65, 2424-2429.	6.7	37

#	Article	IF	Citations
55	Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus. Journal of Clinical Investigation, 2013, 123, 5135-5145.	3.9	92
56	Characterization of Influenza Vaccine Immunogenicity Using Influenza Antigen Microarrays. PLoS ONE, 2013, 8, e64555.	1.1	44
57	On silico peptide microarrays for high-resolution mapping of antibody epitopes and diverse protein-protein interactions. Nature Medicine, 2012, 18, 1434-1440.	15.2	97
58	New tools for classification and monitoring of autoimmune diseases. Nature Reviews Rheumatology, 2012, 8, 317-328.	3.5	81
59	TH1, TH2, and TH17 cells instruct monocytes to differentiate into specialized dendritic cell subsets. Blood, 2011, 118, 3311-3320.	0.6	48
60	A proteomic approach for the identification of novel lysine methyltransferase substrates. Epigenetics and Chromatin, 2011, 4, 19.	1.8	55
61	Regulation of human Th9 differentiation by type I interferons and ILâ€21. Immunology and Cell Biology, 2010, 88, 624-631.	1.0	113
62	The U1â€snRNP complex: structural properties relating to autoimmune pathogenesis in rheumatic diseases. Immunological Reviews, 2010, 233, 126-145.	2.8	56
63	Treatment with a Toll-like receptor inhibitory GpG oligonucleotide delays and attenuates lupus nephritis in NZB/W mice. Autoimmunity, 2010, 43, 140-155.	1.2	28
64	Type I interferon receptor controls B-cell expression of nucleic acid-sensing Toll-like receptors and autoantibody production in a murine model of lupus. Arthritis Research and Therapy, 2009, 11, R112.	1.6	71
65	Cytokines secreted in response to Tollâ€like receptor ligand stimulation modulate differentiation of human Th17 cells. Arthritis and Rheumatism, 2008, 58, 1619-1629.	6.7	67
66	HIT: a versatile proteomics platform for multianalyte phenotyping of cytokines, intracellular proteins and surface molecules. Nature Medicine, 2008, 14, 1284-1289.	15.2	31
67	IRF9 and STAT1 are required for IgG autoantibody production and B cell expression of TLR7 in mice. Journal of Clinical Investigation, 2008, 118, 1417-1426.	3.9	82
68	Technology Insight: can autoantibody profiling improve clinical practice?. Nature Clinical Practice Rheumatology, 2007, 3, 96-103.	3.2	18
69	RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature, 2007, 450, 1106-1110.	13.7	429
70	Autoantigen arrays for multiplex analysis of antibody isotypes. Proteomics, 2006, 6, 5720-5724.	1.3	22
71	A new two-color Fab labeling method for autoantigen protein microarrays. Nature Methods, 2006, 3, 745-751.	9.0	33
72	Single-cell analysis of siRNA-mediated gene silencing using multiparameter flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 59-65.	1.1	9

#	Article	IF	CITATIONS
73	MULTIPLEXED PROTEIN ARRAY PLATFORMS FOR ANALYSIS OF AUTOIMMUNE DISEASES. Annual Review of Immunology, 2006, 24, 391-418.	9.5	102
74	Sources of autoantigens in systemic lupus erythematosus. Current Opinion in Rheumatology, 2005, 17, 513-517.	2.0	64
75	Granzyme B and natural killer (NK) cell death. Modern Rheumatology, 2005, 15, 315-322.	0.9	15
76	The Challenge of Analyzing the Proteome in Humans with Autoimmune Diseases. Annals of the New York Academy of Sciences, 2005, 1062, 61-68.	1.8	8
77	An array of possibilities for the study of autoimmunity. Nature, 2005, 435, 605-611.	13.7	89
78	Protein arrays for studying blood cells and their secreted products. Immunological Reviews, 2005, 204, 264-282.	2.8	47
79	Granzyme B is dispensable for immunologic tolerance to self in a murine model of systemic lupus erythematosus. Arthritis and Rheumatism, 2005, 52, 1684-1693.	6.7	15
80	Granzyme B and natural killer (NK) cell death. Modern Rheumatology, 2005, 15, 315-322.	0.9	16
81	Proteolytic Cleavage of the Catalytic Subunit of DNA-Dependent Protein Kinase during Poliovirus Infection. Journal of Virology, 2004, 78, 6313-6321.	1.5	14
82	Protein microarrays for multiplex analysis of signal transduction pathways. Nature Medicine, 2004, 10, 1390-1396.	15.2	204
83	Interferon-?-inducible proteins are novel autoantigens in murine lupus. Arthritis and Rheumatism, 2004, 50, 3239-3249.	6.7	25
84	Characterization of novel antigens recognized by serum autoantibodies from anti-CD1 TCR-transgenic lupus mice. European Journal of Immunology, 2004, 34, 1654-1662.	1.6	6
85	Murine CD4+CD25+ Regulatory T Cells Fail to Undergo Chromatin Remodeling Across the Proximal Promoter Region of the IL-2 Gene. Journal of Immunology, 2004, 173, 4994-5001.	0.4	66
86	"Hot technologies―for clinical immunology research. Clinical Immunology, 2004, 111, 153-154.	1.4	4
87	High-throughput Methods for Measuring Autoantibodies in Systemic Lupus Erythematosus and other Autoimmune Diseases. Autoimmunity, 2004, 37, 269-272.	1.2	30
88	Genomic and proteomic analysis of multiple sclerosis Opinion. Current Opinion in Immunology, 2003, 15, 660-667.	2.4	31
89	Protein arrays for autoantibody profiling and fine-specificity mapping. Proteomics, 2003, 3, 2077-2084.	1.3	81
90	Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nature Biotechnology, 2003, 21, 1033-1039.	9.4	242

#	Article	IF	CITATIONS
91	Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4984-4989.	3.3	1,373
92	Microarray Profiling of Antibody Responses against Simian-Human Immunodeficiency Virus: Postchallenge Convergence of Reactivities Independent of Host Histocompatibility Type and Vaccine Regimen. Journal of Virology, 2003, 77, 11125-11138.	1.5	90
93	Human Autoimmune Sera as Molecular Probes for the Identification of an Autoantigen Kinase Signaling Pathway. Journal of Experimental Medicine, 2002, 196, 1213-1226.	4.2	57
94	Autoantibody profiling for the study and treatment of autoimmune disease. Arthritis Research, 2002, 4, 290.	2.0	84
95	Proteomics technologies for the study of autoimmune disease. Arthritis and Rheumatism, 2002, 46, 885-893.	6.7	71
96	Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Medicine, 2002, 8, 295-301.	15.2	693
97	Monoclonal Antibodies Derived from BALB/c Mice Immunized with Apoptotic Jurkat T cells Recognize Known Autoantigens. Journal of Autoimmunity, 2001, 16, 59-69.	3.0	35
98	Small nucleolar RNP scleroderma autoantigens associate with phosphorylated serine/arginine splicing factors during apoptosis. Arthritis and Rheumatism, 2000, 43, 1327-1336.	6.7	24
99	Death, autoantigen modifications, and tolerance. Arthritis Research, 2000, 2, 101.	2.0	140
100	Rapid Nucleolytic Degradation of the Small Cytoplasmic Y RNAs during Apoptosis. Journal of Biological Chemistry, 1999, 274, 24799-24807.	1.6	76
101	The La (SS-B) autoantigen, a key protein in RNA biogenesis, is dephosphorylated and cleaved early during apoptosis. Cell Death and Differentiation, 1999, 6, 976-986.	5.0	93
102	Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens. Arthritis and Rheumatism, 1998, 41, 1152-1160.	6.7	191
103	Association of Phosphorylated Serine/Arginine (SR) Splicing Factors With The U1–Small Ribonucleoprotein (snRNP) Autoantigen Complex Accompanies Apoptotic Cell Death. Journal of Experimental Medicine, 1998, 187, 547-560.	4.2	91
104	The 72-kDa Component of Signal Recognition Particle Is Cleaved during Apoptosis. Journal of Biological Chemistry, 1998, 273, 35362-35370.	1.6	62
105	Proteins Phosphorylated during Stress-induced Apoptosis Are Common Targets for Autoantibody Production in Patients with Systemic Lupus Erythematosus. Journal of Experimental Medicine, 1997, 185, 843-854.	4.2	230
106	Modification of RNA Antigens in Apoptosis. , 0, , 299-315.		0