Qinghua Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7746215/publications.pdf

Version: 2024-02-01

			172457	58581
	84	7,276 citations	29	82
	papers	citations	h-index	g-index
Ξ				
	07	07	07	1 (770
	87	87	87	16778
	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells InÂVitro. Cell Stem Cell, 2016, 18, 330-340.	11.1	327
3	Reprogramming of Meiotic Chromatin Architecture during Spermatogenesis. Molecular Cell, 2019, 73, 547-561.e6.	9.7	122
4	Cigarette smoking and aneuploidy in human sperm. Molecular Reproduction and Development, 2001, 59, 417-421.	2.0	113
5	Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Science China Life Sciences, 2020, 63, 1429-1449.	4.9	99
6	A $<$ i>DNAH17 $<$ /i> missense variant causes flagella destabilization and asthenozoospermia. Journal of Experimental Medicine, 2020, 217, .	8.5	88
7	Single sperm typing demonstrates that reduced recombination is associated with the production of aneuploid 24,XY human sperm. American Journal of Medical Genetics Part A, 2001, 99, 34-38.	2.4	87
8	The Configuration of RPA, RAD51, and DMC1 Binding in Meiosis Reveals the Nature of Critical Recombination Intermediates. Molecular Cell, 2020, 79, 689-701.e10.	9.7	87
9	RPL10L Is Required for Male Meiotic Division by Compensating for RPL10 during Meiotic Sex Chromosome Inactivation in Mice. Current Biology, 2017, 27, 1498-1505.e6.	3.9	78
10	Nondisjunction, aneuploidy and tetraploidy (Reply). Nature, 2006, 442, E10-E10.	27.8	77
11	Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. American Journal of Human Genetics, 2021, 108, 309-323.	6.2	74
12	A homozygous FANCM frameshift pathogenic variant causes male infertility. Genetics in Medicine, 2019, 21, 62-70.	2.4	69
13	Dual functions for the ssDNA-binding protein RPA in meiotic recombination. PLoS Genetics, 2019, 15, e1007952.	3.5	61
14	Multicolor fluorescence in situ hybridization analysis of meiotic chromosome segregation in a 47,XYY male and a review of the literature. American Journal of Medical Genetics Part A, 2000, 93, 40-46.	2.4	58
15	Rare variants in FANCA induce premature ovarian insufficiency. Human Genetics, 2019, 138, 1227-1236.	3.8	56
16	microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction, 2014, 148, 43-54.	2.6	55
17	ArhGAP30 promotes p53 acetylation and function in colorectal cancer. Nature Communications, 2014, 5, 4735.	12.8	55
18	IsomiR Bank: a research resource for tracking IsomiRs. Bioinformatics, 2016, 32, 2069-2071.	4.1	52

#	Article	IF	Citations
19	Specific Deletion of Cdh2 in Sertoli Cells Leads to Altered Meiotic Progression and Subfertility of Mice1. Biology of Reproduction, 2015, 92, 79.	2.7	50
20	Homozygous mutations in C14orf39/SIX6OS1 cause non-obstructive azoospermia and premature ovarian insufficiency in humans. American Journal of Human Genetics, 2021, 108, 324-336.	6.2	50
21	miRNA-181 regulates embryo implantation in mice through targeting leukemia inhibitory factor. Journal of Molecular Cell Biology, 2015, 7, 12-22.	3.3	44
22	DeAnnIso: a tool for online detection and annotation of isomiRs from small RNA sequencing data. Nucleic Acids Research, 2016, 44, W166-W175.	14.5	41
23	Development of Postmeiotic Cells In Vitro from Spermatogonial Cells of Prepubertal Cancer Patients. Stem Cells and Development, 2018, 27, 1007-1020.	2.1	39
24	The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis. Journal of Biological Chemistry, 2020, 295, 6289-6298.	3.4	39
25	The evolutionarily conserved genes: Tex37, Ccdc73, Prss55 and Nxt2 are dispensable for fertility in mice. Scientific Reports, 2018, 8, 4975.	3.3	36
26	MOF influences meiotic expansion of H2AX phosphorylation and spermatogenesis in mice. PLoS Genetics, 2018, 14, e1007300.	3.5	36
27	SpermatogenesisOnline 1.0: a resource for spermatogenesis based on manual literature curation and genome-wide data mining. Nucleic Acids Research, 2013, 41, D1055-D1062.	14.5	35
28	Circular RNAs from <i>BOULE</i> play conserved roles in protection against stress-induced fertility decline. Science Advances, 2020, 6, .	10.3	34
29	CPSS 2.0: a computational platform update for the analysis of small RNA sequencing data. Bioinformatics, 2017, 33, 3289-3291.	4.1	32
30	DeAnnCNV: a tool for online detection and annotation of copy number variations from whole-exome sequencing data. Nucleic Acids Research, 2015, 43, W289-W294.	14.5	29
31	Development of Spermatogenesis In Vitro in Three-Dimensional Culture from Spermatogonial Cells of Busulfan-Treated Immature Mice. International Journal of Molecular Sciences, 2018, 19, 3804.	4.1	29
32	Absence of Age Effect on Meiotic Recombination between Human X and Y Chromosomes. American Journal of Human Genetics, 2002, 71, 254-261.	6.2	26
33	Novel lossâ€ofâ€function variants in <scp><i>DNAH17</i></scp> cause multiple morphological abnormalities of the sperm flagella in humans and mice. Clinical Genetics, 2021, 99, 176-186.	2.0	26
34	Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating ROS levels. Development (Cambridge), 2017, 144, 2165-2174.	2.5	25
35	Meiotic Chromosome Behavior in a Human Male t(8;15) Carrier. Journal of Genetics and Genomics, 2014, 41, 177-185.	3.9	24
36	Role of Lipid Metabolism and Signaling in Mammalian Oocyte Maturation, Quality, and Acquisition of Competence. Frontiers in Cell and Developmental Biology, 2021, 9, 639704.	3.7	23

#	Article	IF	CITATIONS
37	A TOP6BL mutation abolishes meiotic DNA double-strand break formation and causes human infertility. Science Bulletin, 2020, 65, 2120-2129.	9.0	18
38	A recurrent <i>ZSWIM7</i> mutation causes male infertility resulting from decreased meiotic recombination. Human Reproduction, 2021, 36, 1436-1445.	0.9	18
39	Specific deficiency of Plzf paralog, Zbtb20, in Sertoli cells does not affect spermatogenesis and fertility in mice. Scientific Reports, 2014, 4, 7062.	3.3	17
40	Whole-exome sequencing of consanguineous families with infertile men and women identifies homologous mutations in <i>SPATA22</i> and <i>MEIOB</i> . Human Reproduction, 2021, 36, 2793-2804.	0.9	17
41	IsopiRBank: a research resource for tracking piRNA isoforms. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	3.0	15
42	MORC2B is essential for meiotic progression and fertility. PLoS Genetics, 2018, 14, e1007175.	3.5	14
43	CARF promotes spermatogonial self-renewal and proliferation through Wnt signaling pathway. Cell Discovery, 2020, 6, 85.	6.7	13
44	Novel frameshift mutation in <i>STK33</i> is associated with asthenozoospermia and multiple morphological abnormalities of the flagella. Human Molecular Genetics, 2021, 30, 1977-1984.	2.9	13
45	Biallelic Variants in CFAP61 Cause Multiple Morphological Abnormalities of the Flagella and Male Infertility. Frontiers in Cell and Developmental Biology, 2021, 9, 803818.	3.7	13
46	RAD51AP2 is required for efficient meiotic recombination between X and Y chromosomes. Science Advances, 2022, 8, eabk1789.	10.3	13
47	ECAT1 is essential for human oocyte maturation and pre-implantation development of the resulting embryos. Scientific Reports, 2016, 6, 38192.	3.3	12
48	Unrepaired DNA damage facilitates elimination of uniparental chromosomes in interspecific hybrid cells. Cell Cycle, 2014, 13, 1345-1356.	2.6	11
49	Follicle Online: an integrated database of follicle assembly, development and ovulation. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav036-bav036.	3.0	11
50	Evolutionarily conserved and testis-specific gene, 4930524B15Rik, is not essential for mouse spermatogenesis and fertility. Molecular Biology Reports, 2020, 47, 5207-5213.	2.3	11
51	ZFP541 maintains the repression of pre-pachytene transcriptional programs and promotes male meiosis progression. Cell Reports, 2022, 38, 110540.	6.4	11
52	<i>Npat</i> â€dependent programmed Sertoli cell proliferation is indispensable for testis cord development and germ cell mitotic arrest. FASEB Journal, 2019, 33, 9075-9086.	0.5	10
53	Normal spermatogenesis and fertility in Ddi1 (DNA damage inducible 1) mutant mice. Reproductive Biology, 2020, 20, 520-524.	1.9	10
54	Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos. Oncotarget, 2017, 8, 11030-11041.	1.8	10

#	Article	IF	Citations
55	Recombination in the pseudoautosomal region in a 47,XYY male. Human Genetics, 2001, 109, 143-145.	3.8	9
56	Abnormal meiotic recombination with complex chromosomal rearrangement in an azoospermic man. Reproductive BioMedicine Online, 2015, 30, 651-658.	2.4	9
57	Anaconda: AN automated pipeline for somatic COpy Number variation Detection and Annotation from tumor exome sequencing data. BMC Bioinformatics, 2017, 18, 436.	2.6	9
58	The testis-specifically expressed Dpep3 is not essential for male fertility in mice. Gene, 2019, 711, 143925.	2.2	9
59	The deubiquitinating gene Usp29 is dispensable for fertility in male mice. Science China Life Sciences, 2019, 62, 544-552.	4.9	9
60	UHRF1-repressed 5'-hydroxymethylcytosine is essential for the male meiotic prophase I. Cell Death and Disease, 2020, 11, 142.	6.3	9
61	A heterozygous hypomorphic mutation of Fanca causes impaired follicle development and subfertility in female mice. Molecular Genetics and Genomics, 2021, 296, 103-112.	2.1	9
62	Biallelic <i>HFM1</i> variants cause non-obstructive azoospermia with meiotic arrest in humans by impairing crossover formation to varying degrees. Human Reproduction, 2022, 37, 1664-1677.	0.9	8
63	PedMiner: a tool for linkage analysis-based identification of disease-associated variants using family based whole-exome sequencing data. Briefings in Bioinformatics, 2021, 22, .	6.5	7
64	Novel Loss-of-Function Mutations in DNAH1 Displayed Different Phenotypic Spectrum in Humans and Mice. Frontiers in Endocrinology, 2021, 12, 765639.	3.5	7
65	Meiotic prophase I defects in an oligospermic man with Wolf-Hirschhorn syndrome with ring chromosome 4. Molecular Cytogenetics, 2014, 7, 45.	0.9	6
66	MeiosisOnline: A Manually Curated Database for Tracking and Predicting Genes Associated With Meiosis. Frontiers in Cell and Developmental Biology, 2021, 9, 673073.	3.7	6
67	Preferential Y-Y pairing and synapsis and abnormal meiotic recombination in a 47,XYY man with non obstructive azoospermia. Molecular Cytogenetics, 2016, 9, 9.	0.9	5
68	Nuclear translocation of MTL5 from cytoplasm requires its direct interaction with LIN9 and is essential for male meiosis and fertility. PLoS Genetics, 2021, 17, e1009753.	3.5	5
69	A novel stop-gain mutation in ARMC2 is associated with multiple morphological abnormalities of the sperm flagella. Reproductive BioMedicine Online, 2021, 43, 913-919.	2.4	5
70	Identification of pathogenic mutations from nonobstructive azoospermia patients. Biology of Reproduction, 2022, 107, 85-94.	2.7	5
71	Meiosis: Recent Progress and New Opportunities. Journal of Genetics and Genomics, 2014, 41, 83-85.	3.9	4
72	DDB1 Regulates Sertoli Cell Proliferation and Testis Cord Remodeling by TGFÎ ² Pathway. Genes, 2019, 10, 974.	2.4	4

#	Article	IF	CITATIONS
73	Inactivation of testis-specific gene C4orf46 is dispensable for spermatogenesis and fertility in mouse. Mammalian Genome, 2021, 32, 364-370.	2.2	4
74	In silico analysis of a novel pathogenic variant c.7G > A in C14orf39 gene identified by WES in a Pakistani family with azoospermia. Molecular Genetics and Genomics, 2022, 297, 719-730.	2.1	4
75	Testis-specific fascin component FSCN3 is dispensable for mouse spermatogenesis and fertility. Molecular Biology Reports, 2022, , 1.	2.3	4
76	The evolutionarily conserved gene, Fam114a2, is dispensable for fertility in mouse. Reproductive Biology, 2021, 21, 100531.	1.9	3
77	Identification and Functional Investigation of Novel Heterozygous HELQ Mutations in Patients with Sertoli Cell-only Syndrome. Genetic Testing and Molecular Biomarkers, 2021, 25, 654-659.	0.7	3
78	FertilityOnline: A Straightforward Pipeline for Functional Gene Annotation and Disease Mutation Discovery. Genomics, Proteomics and Bioinformatics, 2022, 20, 455-465.	6.9	3
79	A Homozygous Loss-of-Function Mutation in MSH5 Abolishes MutSÎ ³ Axial Loading and Causes Meiotic Arrest in NOA-Affected Individuals. International Journal of Molecular Sciences, 2022, 23, 6522.	4.1	3
80	"Response to the letter to the editor "Concerns regarding the potentially causal role of FANCA heterozygous variants in human primary ovarian insufficiencyâ€ê€• Human Genetics, 2021, 140, 695-697.	3.8	2
81	The Spin1 interactor, Spindoc, is dispensable for meiotic division, but essential for haploid spermatid development in mice. Reproductive Biology and Endocrinology, 2021, 19, 144.	3.3	2
82	A Novel APTX Variant and Ataxia with Oculomotor Apraxia Type 1. Journal of Clinical Neurology		