List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7745882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis. Journal of Colloid and Interface Science, 2022, 608, 424-434.	5.0	56
2	Pickering Emulsions Stabilized by Halloysite Nanotubes: From General Aspects to Technological Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	35
3	Temperature-responsive hybrid nanomaterials based on modified halloysite nanotubes uploaded with silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128525.	2.3	42
4	Separation of halloysite/kaolinite mixtures in water controlled by sucrose addition: The influence of the attractive forces on the sedimentation behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128530.	2.3	10
5	Inclusion complexes of triblock L35 copolymer and hydroxyl propyl cyclodextrins: a physico-chemical study. New Journal of Chemistry, 2022, 46, 6114-6120.	1.4	6
6	Effect of different processing techniques and presence of antioxidant on the chitosan film performance. Journal of Vinyl and Additive Technology, 2022, 28, 343-351.	1.8	5
7	Anthocyanins and phenolic acids from Prunus spinosa L. encapsulation in halloysite and maltodextrin based carriers. Applied Clay Science, 2022, 222, 106489.	2.6	14
8	Understanding the Effects of Crosslinking and Reinforcement Agents on the Performance and Durability of Biopolymer Films for Cultural Heritage Protection. Molecules, 2021, 26, 3468.	1.7	13
9	Non-isothermal thermogravimetry as an accelerated tool for the shelf-life prediction of paracetamol formulations. Thermochimica Acta, 2021, 700, 178940.	1.2	15
10	Halloysite nanotubes-based nanocomposites for the hydrophobization of hydraulic mortar. Journal of Coatings Technology Research, 2021, 18, 1625-1634.	1.2	12
11	Halloysite nanotubes filled with MgO for paper reinforcement and deacidification. Applied Clay Science, 2021, 213, 106231.	2.6	75
12	Hydroxypropyl Cellulose Films Filled with Halloysite Nanotubes/Wax Hybrid Microspheres. Industrial & Engineering Chemistry Research, 2021, 60, 1656-1665.	1.8	69
13	Effects of halloysite content on the thermo-mechanical performances of composite bioplastics. Applied Clay Science, 2020, 185, 105416.	2.6	109
14	Bionanocomposite Films Containing Halloysite Nanotubes and Natural Antioxidants with Enhanced Performance and Durability as Promising Materials for Cultural Heritage Protection. Polymers, 2020, 12, 1973.	2.0	18
15	Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating. ACS Applied Materials & Interfaces, 2020, 12, 24348-24362.	4.0	96
16	Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydrate Polymers, 2020, 245, 116502.	5.1	163
17	Colloidal stability and self-assembling behavior of nanoclays. , 2020, , 95-116.		4
18	Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. Langmuir, 2020, 36, 3677-3689.	1.6	73

#	Article	IF	CITATIONS
19	Synthesis, characterization and study of covalently modified triazole LAPONITE® edges. Applied Clay Science, 2020, 187, 105489.	2.6	19
20	Halloysite nanotubes/pluronic nanocomposites for waterlogged archeological wood: thermal stability and X-ray microtomography. Journal of Thermal Analysis and Calorimetry, 2020, 141, 981-989.	2.0	8
21	Olive mill wastewaters decontamination based on organo-nano-clay composites. Ceramics International, 2019, 45, 2751-2759.	2.3	17
22	Colloidal stability of halloysite clay nanotubes. Ceramics International, 2019, 45, 2858-2865.	2.3	52
23	Layered composite based on halloysite and natural polymers: a carrier for the pH controlled release of drugs. New Journal of Chemistry, 2019, 43, 10887-10893.	1.4	105
24	Pickering Emulsion Gels Based on Halloysite Nanotubes and Ionic Biopolymers: Properties and Cleaning Action on Marble Surface. ACS Applied Nano Materials, 2019, 2, 3169-3176.	2.4	71
25	Adsorption isotherms and thermal behavior of hybrids based on quercetin and inorganic fillers. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1971-1977.	2.0	13
26	Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement. Journal of Colloid and Interface Science, 2019, 547, 361-369.	5.0	127
27	Core/Shell Gel Beads with Embedded Halloysite Nanotubes for Controlled Drug Release. Coatings, 2019, 9, 70.	1.2	52
28	Simultaneous Removal and Recovery of Metal Ions and Dyes from Wastewater through Montmorillonite Clay Mineral. Nanomaterials, 2019, 9, 1699.	1.9	37
29	Nanoclays for Conservation. , 2019, , 149-170.		2
30	Chemical modification of halloysite nanotubes for controlled loading and release. Journal of Materials Chemistry B, 2018, 6, 3415-3433.	2.9	97
31	Halloysite nanotubes sandwiched between chitosan layers: novel bionanocomposites with multilayer structures. New Journal of Chemistry, 2018, 42, 8384-8390.	1.4	66
32	Nanohydrogel Formation within the Halloysite Lumen for Triggered and Sustained Release. ACS Applied Materials & Interfaces, 2018, 10, 8265-8273.	4.0	155
33	Halloysite Nanotubes for Cleaning, Consolidation and Protection. Chemical Record, 2018, 18, 940-949.	2.9	45
34	Crystallinity of block copolymer controlled by cyclodextrin. Journal of Thermal Analysis and Calorimetry, 2018, 132, 191-196.	2.0	6
35	Microemulsion Encapsulated into Halloysite Nanotubes and their Applications for Cleaning of a Marble Surface. Applied Sciences (Switzerland), 2018, 8, 1455.	1.3	20
36	Filling of Mater-Bi with Nanoclays to Enhance the Biofilm Rigidity. Journal of Functional Biomaterials, 2018, 9, 60.	1.8	16

#	Article	IF	CITATIONS
37	Stability of Halloysite, Imogolite, and Boron Nitride Nanotubes in Solvent Media. Applied Sciences (Switzerland), 2018, 8, 1068.	1.3	33
38	Selective adsorption of oppositely charged PNIPAAM on halloysite surfaces: a route to thermo-responsive nanocarriers. Nanotechnology, 2018, 29, 325702.	1.3	44
39	Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the Deacidification of Waterlogged Archeological Woods. ACS Applied Materials & Interfaces, 2018, 10, 27355-27364.	4.0	73
40	Thermal Properties of Multilayer Nanocomposites Based on Halloysite Nanotubes and Biopolymers. Journal of Composites Science, 2018, 2, 41.	1.4	19
41	Biopolymer-Targeted Adsorption onto Halloysite Nanotubes in Aqueous Media. Langmuir, 2017, 33, 3317-3323.	1.6	107
42	Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. Journal of Materials Chemistry B, 2017, 5, 2867-2882.	2.9	165
43	Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Applied Materials & Interfaces, 2017, 9, 17476-17488.	4.0	258
44	Coffee grounds as filler for pectin: Green composites with competitive performances dependent on the UV irradiation. Carbohydrate Polymers, 2017, 170, 198-205.	5.1	54
45	Correction: Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. Journal of Materials Chemistry B, 2017, 5, 4246-4246.	2.9	11
46	Halloysite nanotubes as support for metal-based catalysts. Journal of Materials Chemistry A, 2017, 5, 13276-13293.	5.2	228
47	Nanocomposites based on esterified colophony and halloysite clay nanotubes as consolidants for waterlogged archaeological woods. Cellulose, 2017, 24, 3367-3376.	2.4	60
48	Halloysite Nanotubes: Controlled Access and Release by Smart Gates. Nanomaterials, 2017, 7, 199.	1.9	93
49	Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydrate Polymers, 2016, 152, 548-557.	5.1	188
50	Halloysite nanotubes with fluorinated cavity: an innovative consolidant for paper treatment. Clay Minerals, 2016, 51, 445-455.	0.2	20
51	Ecocompatible Halloysite/Cucurbit[8]uril Hybrid as Efficient Nanosponge for Pollutants Removal. ChemistrySelect, 2016, 1, 1773-1779.	0.7	38
52	Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules. RSC Advances, 2016, 6, 87935-87944.	1.7	53
53	Effect of the Biopolymer Charge and the Nanoclay Morphology on Nanocomposite Materials. Industrial & Engineering Chemistry Research, 2016, 55, 7373-7380.	1.8	103
54	Design of PNIPAAM covalently grafted on halloysite nanotubes as a support for metal-based catalysts. RSC Advances, 2016, 6, 55312-55318.	1.7	75

#	Article	IF	CITATIONS
55	Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids and Surfaces B: Biointerfaces, 2016, 140, 505-513.	2.5	140
56	Steric stabilization of modified nanoclays triggered by temperature. Journal of Colloid and Interface Science, 2016, 461, 346-351.	5.0	27
57	Highly untangled multiwalled carbon nanotube@polyhedral oligomeric silsesquioxane ionic hybrids: Synthesis, characterization and nonlinear optical properties. Carbon, 2015, 86, 325-337.	5.4	23
58	Thermal and dynamic mechanical properties of beeswax-halloysite nanocomposites for consolidating waterlogged archaeological woods. Polymer Degradation and Stability, 2015, 120, 220-225.	2.7	63
59	Palladium supported on Halloysite-triazolium salts as catalyst for ligand free Suzuki cross-coupling in water under microwave irradiation. Journal of Molecular Catalysis A, 2015, 408, 12-19.	4.8	52
60	Hydrophobically Modified Halloysite Nanotubes as Reverse Micelles for Water-in-Oil Emulsion. Langmuir, 2015, 31, 7472-7478.	1.6	111
61	Mixed aggregates based on tetronic-fluorinated surfactants for selective oils capture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474, 85-91.	2.3	5
62	Biocompatible Poly(<i>N</i> -isopropylacrylamide)-halloysite Nanotubes for Thermoresponsive Curcumin Release. Journal of Physical Chemistry C, 2015, 119, 8944-8951.	1.5	98
63	Multicavity halloysite–amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells. Journal of Materials Chemistry B, 2015, 3, 4074-4081.	2.9	77
64	Thermodynamics of cyclodextrin–star copolymer threading–dethreading process. Journal of Thermal Analysis and Calorimetry, 2015, 121, 1345-1352.	2.0	7
65	Pharmaceutical properties of supramolecular assembly of co-loaded cardanol/triazole-halloysite systems. International Journal of Pharmaceutics, 2015, 478, 476-485.	2.6	57
66	Binding abilities of new cyclodextrin–cucurbituril supramolecular hosts. Supramolecular Chemistry, 2015, 27, 233-243.	1.5	4
67	Functionalized halloysite multivalent glycocluster as a new drug delivery system. Journal of Materials Chemistry B, 2014, 2, 7732-7738.	2.9	77
68	Green conditions for the Suzuki reaction using microwave irradiation and a new HNTâ€supported ionic liquidâ€like phase (HNTâ€SILLP) catalyst. Applied Organometallic Chemistry, 2014, 28, 234-238.	1.7	47
69	Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. International Journal of Pharmaceutics, 2014, 475, 613-623.	2.6	106
70	Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection. Journal of Thermal Analysis and Calorimetry, 2014, 117, 1293-1298.	2.0	40
71	Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases. ACS Applied Materials & Interfaces, 2014, 6, 606-612.	4.0	146
72	Selective Functionalization of Halloysite Cavity by Click Reaction: Structured Filler for Enhancing Mechanical Properties of Bionanocomposite Films. Journal of Physical Chemistry C, 2014, 118, 15095-15101.	1.5	61

#	Article	IF	CITATIONS
73	Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. Journal of Organometallic Chemistry, 2014, 749, 410-415.	0.8	81
74	Halloysite nanotube with fluorinated lumen: Non-foaming nanocontainer for storage and controlled release of oxygen in aqueous media. Journal of Colloid and Interface Science, 2014, 417, 66-71.	5.0	76
75	Determining the selective impregnation of waterlogged archaeological woods with poly(ethylene) glycols mixtures by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1449-1455.	2.0	17
76	Alginate gel beads filled with halloysite nanotubes. Applied Clay Science, 2013, 72, 132-137.	2.6	91
77	Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polymer Degradation and Stability, 2013, 98, 2529-2536.	2.7	101
78	Polyethylene glycol/clay nanotubes composites. Journal of Thermal Analysis and Calorimetry, 2013, 112, 383-389.	2.0	54
79	POSS–Tetraalkylammonium Salts: A New Class of Ionic Liquids. European Journal of Inorganic Chemistry, 2012, 2012, 5668-5676.	1.0	26
80	Exploiting the Colloidal Stability and Solubilization Ability of Clay Nanotubes/Ionic Surfactant Hybrid Nanomaterials. Journal of Physical Chemistry C, 2012, 116, 21932-21938.	1.5	145
81	Quantitative Description of Temperature Induced Self-Aggregation Thermograms Determined by Differential Scanning Calorimetry. Langmuir, 2012, 28, 17609-17616.	1.6	11
82	Aqueous phase/nanoparticles interface: hydroxypropyl cellulose adsorption and desorption triggered by temperature and inorganic salts. Soft Matter, 2012, 8, 3627.	1.2	24
83	Temperature-controlled poly(propylene) glycol hydrophobicity on the formation of inclusion complexes with modified cyclodextrins. A DSC and ITC study. Physical Chemistry Chemical Physics, 2011, 13, 12571.	1.3	20
84	Films of Halloysite Nanotubes Sandwiched between Two Layers of Biopolymer: From the Morphology to the Dielectric, Thermal, Transparency, and Wettability Properties. Journal of Physical Chemistry C, 2011, 115, 20491-20498.	1.5	152
85	Dispersions of Nanoclays of Different Shapes into Aqueous and Solid Biopolymeric Matrices. Extended Physicochemical Study. Langmuir, 2011, 27, 1158-1167.	1.6	155
86	A comparative thermogravimetric study of waterlogged archaeological and sound woods. Journal of Thermal Analysis and Calorimetry, 2011, 104, 451-457.	2.0	28
87	Copolymers sensitive to temperature and pH in water and in water+oil mixtures: A DSC, ITC and volumetric study. Journal of Colloid and Interface Science, 2011, 354, 749-757.	5.0	18
88	Thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2010, 101, 1085-1091.	2.0	32
89	Dispersions of nanosilica in biocompatible copolymers. Polymer Degradation and Stability, 2010, 95, 610-617.	2.7	81
90	Thermodynamics of Surfactants, Block Copolymers and Their Mixtures in Water: The Role of the Isothermal Calorimetry. International Journal of Molecular Sciences, 2009, 10, 2873-2895.	1.8	14

#	Article	IF	CITATIONS
91	Extended Investigation of the Aqueous Self-Assembling Behavior of a Newly Designed Fluorinated Surfactant. Langmuir, 2009, 25, 13368-13375.	1.6	14
92	Small Angle Neutron Scattering, X-ray Diffraction, Differential Scanning Calorimetry, and Thermogravimetry Studies to Characterize the Properties of Clay Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 12213-12219.	1.5	28
93	Polystyrene nanoparticles in the presence of (ethylene oxide)13(propylene oxide)30(ethylene oxide)13, N,N-dimethyloctylamine-N-oxide and their mixtures. A calorimetric and dynamic light scattering study. Physical Chemistry Chemical Physics, 2008, 10, 794-799.	1.3	6
94	Aqueous Laponite Clay Dispersions in the Presence of Poly(ethylene oxide) or Poly(propylene oxide) Oligomers and their Triblock Copolymers. Journal of Physical Chemistry B, 2008, 112, 9328-9336.	1.2	46
95	Solubilization of an Organic Solute in Aqueous Solutions of Unimeric Block Copolymers and Their Mixtures with Monomeric Surfactant:  Volume, Surface Tension, Differential Scanning Calorimetry, Viscosity, and Fluorescence Spectroscopy Studies. Journal of Physical Chemistry B, 2008, 112, 5616-5625.	1.2	11
96	Copolymerâ^'Cyclodextrin Inclusion Complexes in Water and in the Solid State. A Physico-Chemical Study. Journal of Physical Chemistry B, 2008, 112, 11887-11895.	1.2	60
97	Laponite clay in homopolymer and tri-block copolymer matrices. Journal of Thermal Analysis and Calorimetry, 2007, 87, 61-67.	2.0	27
98	Aqueous Nonionic Copolymer-Functionalized Laponite Clay. A Thermodynamic and Spectrophotometric Study To Characterize Its Behavior toward an Organic Material. Langmuir, 2006, 22, 8056-8062.	1.6	13
99	The solubilisation behaviour of some dichloroalkanes in aqueous solutions of PEO–PPO–PEO triblock copolymers: a dynamic light scattering, fluorescence spectroscopy, and SANS study. Physical Chemistry Chemical Physics, 2006, 8, 2299-2312.	1.3	42
100	Aqueous Block Copolymerâ^'Surfactant Mixtures and Their Ability in Solubilizing Chlorinated Organic Compounds. A Thermodynamic and SANS Study. Journal of Physical Chemistry B, 2006, 110, 25883-25894.	1.2	16
101	A thermodynamic study to evidence the -dichloroalkane/ block copolymer mixed aggregates formation: Effect of the copolymer architecture. Journal of Colloid and Interface Science, 2006, 300, 368-374.	5.0	12
102	Thermodynamic Behavior of Non-Ionic Tri-block Copolymers in Water at Three Temperatures. Journal of Solution Chemistry, 2006, 35, 659-678.	0.6	19
103	Volumes of aqueous block copolymers based on poly(propylene oxides) and poly(ethylene oxides) in a large temperature range: A quantitative description. Journal of Chemical Thermodynamics, 2006, 38, 1344-1350.	1.0	10
104	Adsorption of triblock copolymers and their homopolymers at laponite clay/solution interface. Role played by the copolymer nature. Physical Chemistry Chemical Physics, 2005, 7, 3994.	1.3	25
105	Heat capacities and volumes of suspensions in the presence of surfactants. Thermochimica Acta, 2004, 418, 95-108.	1.2	4
106	Mass Action Model Applied to the Thermodynamic Properties of Transfer of Nonionic Copolymers from Water to the Aqueous Surfactant Solutions. Journal of Physical Chemistry B, 2004, 108, 1189-1196.	1.2	25
107	Calorimetric and Volumetric Investigations of the Effect of the Hydrophobicity of the Surfactant on the Binding between (Ethylene oxide)13-(propylene oxide)30-(ethylene oxide)13and Sodium Alkanoates in Aqueous Solutions. Macromolecules, 2004, 37, 5423-5429.	2.2	21
108	Heat Capacity of Transfer of (Ethylene oxide)13â^'(propylene oxide)30â^'(ethylene oxide)13from Water to the Aqueous Anionic Surfactant Solutions at 298 K. A Quantitative Treatment. Langmuir, 2004, 20, 9938-9944.	1.6	9

#	Article	IF	CITATIONS
109	Thermodynamics of Aqueous Poly(ethylene oxide)â [~] Poly(propylene oxide)â [~] Poly(ethylene) Tj ETQq1 1 0.784314 Chain Length. Journal of Physical Chemistry B, 2004, 108, 18214-18221.	rgBT 1.2	/Overlock 10 Tf 5 22
110	Binding between (Ethylene Oxide)13â^'(Propylene Oxide)30â^'(Ethylene Oxide)13 and Sodium Decanoate. Volume, Enthalpy, and Heat Capacity Studies. Journal of Physical Chemistry B, 2003, 107, 819-825.	1.2	17
111	Heat Capacity Study to Evidence the Interactions between Cyclodextrin and Surfactant in the Monomeric and Micellized States. Langmuir, 2003, 19, 7188-7195.	1.6	24
112	Characterization of the Cyclodextrinâ~'Surfactant Interactions by Volume and Enthalpy. Journal of Physical Chemistry B, 2003, 107, 13150-13157.	1.2	36
113	Volumes and heat capacities of the aqueous sodium dodecanoate/sodium perfluorooctanoate mixtures in the presence of β-cyclodextrin. Physical Chemistry Chemical Physics, 2003, 5, 5084-5090.	1.3	20
114	Thermodynamic Evidence of Cyclodextrinâ^'Micelle Interactions. Journal of Physical Chemistry B, 2002, 106, 8944-8953.	1.2	42
115	Binding of Short Alkyl Chain Surfactants to the (Ethylene oxide)13â^'(Propylene oxide)30â^'(Ethylene) Tj ETQq1 1 Microcalorimetry. Macromolecules, 2002, 35, 7067-7073.	0.784 2.2	4314 rgBT /Overl 26
116	Thermodynamics of Micellization of Sodium Alkyl Sulfates in Water at High Temperature and Pressure. Langmuir, 2001, 17, 8078-8084.	1.6	20
117	Calorimetric Study of Sodiumn-Alkanoateâ^'Modified Cyclodextrinâ^'Water Ternary Systems. Langmuir, 2000, 16, 4441-4446.	1.6	23
118	Poly(ethylene oxide)13-Poly(propylene oxide)30-Poly(ethylene oxide)13Electrolyte Interactions in Aqueous Solutions at Some Temperatures. Langmuir, 2000, 16, 5579-5583.	1.6	46
119	Polymerâ^'Surfactant Interactions. A Quantitative Approach to the Enthalpy of Transfer of Poly(Ethylene Glycol)s from Water to the Aqueous Sodium Perfluoroalkanoates Solutions. Journal of Physical Chemistry B, 2000, 104, 12130-12136.	1.2	24
120	Title is missing!. Journal of Solution Chemistry, 1999, 28, 1001-1018.	0.6	3
121	Thermodynamic Properties of Sodiumn-Perfluoroalkanoates in Water and in Water + Cyclodextrins Mixturesâ€. Langmuir, 1999, 15, 5014-5022.	1.6	36
122	Volumes of Polar Additives in Aqueous Solutions of the Poly(ethylene oxide)13â^'Poly(propylene) Tj ETQq0 0 0 rg	;BT /O\ 1.6	verlock 10 Tf 50 2
123	Thermodynamic Properties of Sodiumn-Alkanecarboxylates in Water and in Water + Cyclodextrins Mixturesâ€. Langmuir, 1998, 14, 6045-6053.	1.6	40
124	Demixing of Mixed Micelles. Thermodynamics of Sodium Perfluorooctanoateâ^'Sodium Dodecanoate Mixtures in Water. Langmuir, 1997, 13, 192-202.	1.6	66
125	Thermodynamics ofN,N,N-octylpentyldimethyl-ammonium chloride in water-urea mixtures. Journal of Solution Chemistry, 1997, 26, 889-911.	0.6	10
126	Energetics of Waterâ^'Dodecyl Surfactantâ^'Macrocyclic Compound Ternary Systems. Langmuir, 1996, 12, 890-901.	1.6	7

#	Article	IF	CITATIONS
127	Apparent molar volumes of 1-pentanol in water fromT=298 K toT=413 K atp=0.1 MPa andp=19 MPa. Journal of Chemical Thermodynamics, 1996, 28, 873-886.	1.0	10
128	Thermodynamic Studies of Sodium Dodecyl Sulfate–Sodium Dodecanoate Mixtures in Water. Journal of Colloid and Interface Science, 1996, 180, 174-187.	5.0	38
129	Excess free energy, enthalpy and entropy of surfactant-surfactant mixed micelle formation. Fluid Phase Equilibria, 1996, 126, 273-287.	1.4	9
130	Effect of Large Changes in Temperature and Pressure on the Thermodynamic Properties of Micellization and on the Distribution Constant of a Polar Solute in Micellar Solutions. The Journal of Physical Chemistry, 1996, 100, 2260-2268.	2.9	17
131	Volumes and heat capacities of anionic-nonionic surfactant mixtures. Journal of Solution Chemistry, 1995, 24, 369-384.	0.6	10
132	Apparent Molar Volumes of Some Hydrogenated and Fluorinated Alcohols in Sodium Dodecanoate and Sodium Perfluorooctanoate Aqueous Solutions. Langmuir, 1995, 11, 718-724.	1.6	32
133	Thermodynamic properties of water-î²-cyclodextrin-dodecylsurfactant ternary systems. Journal of Solution Chemistry, 1995, 24, 103-120.	0.6	26
134	Enthalpies of transfer of pentanol from water to sodium dodecylsulfate-dodecyl-dimethylamine oxide-water mixtures. Journal of Theoretical Biology, 1994, 41, 1217-1226.	0.8	2
135	Energetics of sodium dodecylsulfate-dodecyldimethylamine oxide mixed micelle formation. Journal of Solution Chemistry, 1994, 23, 639-662.	0.6	25
136	Thermodynamics of Solubilization of Pentanol in Sodium Dodecyl Sulfate-Dodecyldimethylamine Oxide Mixed Micelles. Journal of Colloid and Interface Science, 1994, 166, 356-362.	5.0	7
137	Thermodynamic properties of additive–surfactant–water ternary systems. Chemical Society Reviews, 1994, 23, 67-73.	18.7	44
138	Volumes, Heat Capacities, and Conductivities of Water-Surfactant-18-Crown-6 Ether Systems. Langmuir, 1994, 10, 423-431.	1.6	26
139	Enthalpies of Mixing of Some Primary Hydrogenated and Fluorinated Alcohols and Sodium Perfluorooctanoate Aqueous Solutions. Langmuir, 1994, 10, 1377-1386.	1.6	14
140	Enthalpies of Mixing of Some Primary Hydrogenated and Fluorinated Alcohols and Sodium Dodecanoate Aqueous Solutions. Journal of Colloid and Interface Science, 1993, 155, 452-464.	5.0	9
141	N,N,N-Alkyloctyldimethylammonium Chlorides in Water: A Thermodynamic Investigation. Journal of Colloid and Interface Science, 1993, 159, 354-365.	5.0	11
142	Thermodynamic properties of some N-alkyl-N-methylpiperidinium chlorides and N-alkylpiperidine hydrochlorides in water. Journal of Solution Chemistry, 1993, 22, 1-26.	0.6	13
143	Thermodynamic and 19F NMR studies of antimony trifluoride in water. Journal of Solution Chemistry, 1993, 22, 489-505.	0.6	0
144	Volume and heat capacity of sodium dodecyl sulfate-dodecyldimethylamine oxide mixed micelles. The Journal of Physical Chemistry, 1993, 97, 6914-6919.	2.9	60

#	Article	IF	CITATIONS
145	Thermodynamic studies of octyltrimethylammonium chloride in water. Journal of Theoretical Biology, 1992, 38, 2693-2705.	0.8	13
146	Heat capacities of some primary alcohols in dodecyltrimethylammonium bromide aqueous solutions. The Journal of Physical Chemistry, 1991, 95, 3322-3330.	2.9	26
147	Thermodynamic properties of N-octyl-, N-decyl- and N-dodecylpyridinium chlorides in water. Journal of Solution Chemistry, 1991, 20, 1031-1058.	0.6	28
148	Dodecyltrimethylammonium bromide in water-urea mixtures: volumes, heat capacities, and conductivities. The Journal of Physical Chemistry, 1991, 95, 5664-5673.	2.9	49
149	Volumes and compressibilities of pentanol in aqueous dodecyltrimethylammonium bromide solutions at 15, 25 and 35°C. Journal of Solution Chemistry, 1990, 19, 97-128.	0.6	18
150	Standard partial molar volumes of alcohols in aqueous dodecyltrimethylammonium bromide solutions. Journal of Solution Chemistry, 1990, 19, 767-791.	0.6	11
151	Volumes and compressibilities of pentanol in aqueous alkyltrimethylammonium bromide solutions at different temperatures. Journal of Solution Chemistry, 1990, 19, 639-664.	0.6	17
152	Partial molar volumes and compressibilities of alkyltrimethylammonium bromides. Journal of Solution Chemistry, 1990, 19, 665-692.	0.6	54
153	Thermodynamic properties of N-octyl- and N-dodecylnicotinamide chlorides in water. Journal of Solution Chemistry, 1990, 19, 247-270.	0.6	21
154	Thermodynamics of transfer of polar additives from the aqueous to the dodecylsurfactant micellar phases. Journal of Solution Chemistry, 1990, 19, 995-1018.	0.6	10
155	Thermodynamic properties of pentanol in dodecyltrimethylammonium bromide aqueous solutions. Colloids and Surfaces, 1989, 35, 309-323.	0.9	6
156	Volumes, heat capacities and solubilities of amyl compounds in decyltrimethylammonium bromide aqueous solutions. Journal of Solution Chemistry, 1989, 18, 905-925.	0.6	5
157	Heat capacities, volumes and solubilities of pentanol in aqueous surfactant solutions. Journal of Solution Chemistry, 1989, 18, 403-420.	0.6	6
158	Polarographic measurements of micellar diffusion coefficients: new results and implications of surfactant adsorption at the mercury-solution interface. Langmuir, 1989, 5, 1242-1249.	1.6	15
159	Enthalpy of Solution of Nonionic Solutes in Organized Systems. , 1989, , 299-317.		0
160	Enthalpies of mixing of some nitriles aqueous solutions with dodecylsurfactants micellar solutions. Journal of Solution Chemistry, 1988, 17, 937-952.	0.6	6
161	Heat capacities, volumes and solubilities of pentanol in aqueous alkyltrimethylammonium bromides. Journal of Solution Chemistry, 1988, 17, 673-696.	0.6	43
162	Excess enthalpies of solution of some primary and secondary alcohols in sodium dodecylsulfate micellar solutions. Journal of Solution Chemistry, 1988, 17, 245-265.	0.6	29

STEFANA MILIOTO

#	Article	IF	CITATIONS
163	Thermodynamic properties and conductivities of some dodecylsurfactants in water. Journal of Solution Chemistry, 1988, 17, 1015-1041.	0.6	63
164	Thermodynamics of transfer of some nitroalkanes from aqueous to dodecyltrimethylammonium bromide micellar phases. Thermochimica Acta, 1988, 137, 151-164.	1.2	5
165	Enthalpies of mixing of dodecyltrimethylammonium bromide and secondary alcohols aqueous solutions. Journal of Colloid and Interface Science, 1988, 123, 92-104.	5.0	7
166	Mass-action model for solute distribution between aqueous and micellar phases: Mixing enthalpies of alcohols and dodecyltrimethylammonium bromide solutions. Journal of Colloid and Interface Science, 1987, 117, 64-80.	5.0	35
167	Excess enthalpies of solution of primary and secondary alcohols in dodecyldimethylamine oxide micellar solutions. Journal of Solution Chemistry, 1987, 16, 943-956.	0.6	30
168	Heat capacities of butanol and pentanol in aqueous dodecyltrimethylammonium bromide solutions. Journal of Solution Chemistry, 1987, 16, 767-789.	0.6	23
169	Enthalpies of solution and dilution of butanol and pentanol in dodecyltrimethylammonium bromide micellar solutions. Journal of Solution Chemistry, 1987, 16, 373-398.	0.6	35
170	Binding constants and partial molar volumes of primary alcohols in sodium dodecylsulfate micelles. Journal of Solution Chemistry, 1986, 15, 623-648.	0.6	43