
Mou Pal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7745860/publications.pdf Version: 2024-02-01

Μου Ρω

#	Article	IF	CITATIONS
1	Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors. Nanoscale Research Letters, 2012, 7, 1.	3.1	1,685
2	Size-Controlled Synthesis of Spherical TiO2Nanoparticles:  Morphology, Crystallization, and Phase Transition. Journal of Physical Chemistry C, 2007, 111, 96-102.	1.5	182
3	Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity. Chemical Physics Letters, 2016, 660, 93-98.	1.2	102
4	Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: Effect of thermal treatment on structural, optical and electrical properties. Materials Science in Semiconductor Processing, 2016, 44, 91-100.	1.9	86
5	Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	78
6	Effect of Eu ion incorporation on the emission behavior of Y 2 O 3 nanophosphors: A detailed study of structural and optical properties. Optical Materials, 2016, 60, 159-168.	1.7	66
7	Formation of Cu2SnS3 thin film by the heat treatment of electrodeposited SnS–Cu layers. Journal of Materials Science: Materials in Electronics, 2013, 24, 4060-4067.	1.1	53
8	Synthesis of Eu+3 doped ZnS nanoparticles by a wet chemical route and its characterization. Optical Materials, 2013, 35, 2664-2669.	1.7	53
9	A facile one-pot synthesis of highly luminescent CdS nanoparticles using thioglycerol as capping agent. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	48
10	Effect of ytterbium doping concentration on structural, optical and photocatalytic properties of TiO2 thin films. Ceramics International, 2017, 43, 15777-15784.	2.3	37
11	Synthesis and Photocatalytic Activity of Yb Doped TiO ₂ Nanoparticles under Visible Light. Journal of Nano Research, 0, 5, 193-200.	0.8	35
12	Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method. Thin Solid Films, 2013, 535, 78-82.	0.8	35
13	Structural, optical and electrical properties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition. Applied Surface Science, 2018, 427, 1099-1106.	3.1	32
14	Effect of Ag doping on structural, optical and electrical properties of antimony sulfide thin films. Journal of Materials Science, 2018, 53, 11562-11573.	1.7	29
15	Structural, optical, and photoluminescence properties of erbium doped TiO2 films. Vacuum, 2019, 169, 108873.	1.6	29
16	CuOX thin films by direct oxidation of Cu films deposited by physical vapor deposition. Results in Physics, 2017, 7, 4140-4144.	2.0	28
17	Theoretical modelling and device structure engineering of kesterite solar cells to boost the conversion efficiency over 20%. Solar Energy, 2021, 220, 316-330.	2.9	23
18	Structural Evolution of Multilayer SnS/Cu/ZnS Stack to Phase-Pure Cu ₂ ZnSnS ₄ Thin Films by Thermal Processing. ECS Journal of Solid State Science and Technology, 2015, 4, P91-P96.	0.9	21

Mou Pal

#	Article	IF	CITATIONS
19	Surfactant-mediated self-assembly of Sb ₂ S ₃ nanorods during hydrothermal synthesis. Journal of Materials Research, 2017, 32, 530-538.	1.2	21
20	Electrical properties and spectroscopic ellipsometry studies of covellite CuS thin films deposited from non ammoniacal chemical bath. Optical Materials, 2019, 91, 147-154.	1.7	19
21	Development of Cu2ZnSnS4 films from a non-toxic molecular precursor ink and theoretical investigation of device performance using experimental outcomes. Solar Energy, 2020, 199, 246-255.	2.9	19
22	CdTe/CdS solar cells with CdTe grown at low vacuum. Vacuum, 2017, 142, 175-180.	1.6	18
23	Bi2S3 nanoparticles by facile chemical synthesis: Role of pH on growth and physical properties. Advanced Powder Technology, 2018, 29, 3561-3568.	2.0	18
24	Phase pure CuSbS2 thin films by heat treatment of electrodeposited Sb2S3/Cu layers. Journal of Solid State Electrochemistry, 2020, 24, 185-194.	1.2	17
25	Gram-scale synthesis of highly crystalline, 0-D and 1-D SnO2 nanostructures through surfactant-free hydrothermal process. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	15
26	Highly stable mesoporous silica nanospheres embedded with FeCo/graphitic shell nanocrystals as magnetically recyclable multifunctional adsorbents for wastewater treatment. RSC Advances, 2018, 8, 1089-1097.	1.7	15
27	Facile solvothermal synthesis of Cu2ZnSn1-xGexS4 nanocrystals: Effect of Ge content on optical and electrical properties. Materials Chemistry and Physics, 2021, 257, 123764.	2.0	15
28	Confined growth of highly uniform and single bcc-phased FeCo/graphitic-shell nanocrystals in SBA-15. Microporous and Mesoporous Materials, 2013, 180, 32-39.	2.2	14
29	Phase controlled solvothermal synthesis of Cu2ZnSnS4, Cu2ZnSn(S,Se)4 and Cu2ZnSnSe4 Nanocrystals: The effect of Se and S sources on phase purity. Materials Chemistry and Physics, 2015, 166, 201-206.	2.0	14
30	Facile synthesis of Cu2ZnGeS4 thin films from binary metal sulfides and study of their physical properties. Thin Solid Films, 2019, 676, 68-74.	0.8	14
31	Ultraâ€small, Uniform, and Single bccâ€Phased Fe _x Co _{1â€x} /Graphitic Shell Nanocrystals for <i>T</i> ₁ Magnetic Resonance Imaging Contrast Agents. Chemistry - an Asian Journal, 2013, 8, 290-295.	1.7	13
32	Synthesis and characterization of nanoparticles of CZTSe by microwave-assited chemical synthesis. Materials Research Express, 2016, 3, 125017.	0.8	12
33	Phase controlled synthesis of CuSbS2 nanostructures: Effect of reaction conditions on phase purity and morphology. Materials and Design, 2017, 136, 165-173.	3.3	12
34	Microwave-assisted chemical synthesis of Zn2SnO4 nanoparticles. Materials Science in Semiconductor Processing, 2020, 108, 104878.	1.9	12
35	Structural evolution of chemically deposited binary stacks of Sb 2 S 3 â€CuS to phaseâ€pure CuSbS 2 thin films and evaluation of device parameters of CuSbS 2 /CdS heterojunction. International Journal of Energy Research, 2020, 44, 5881-5894.	2.2	7
36	Theoretical evaluation of emerging Cd-free Cu3BiS3 based solar cells using experimental data of chemically deposited Cu3BiS3 thin films. Journal of Alloys and Compounds, 2021, 867, 159156.	2.8	7

Mou Pal

#	Article	IF	CITATIONS
37	Thermal treatments and characterization of CZTS thin films deposited using nanoparticle ink. Canadian Journal of Physics, 2014, 92, 875-878.	0.4	6
38	Path toward the Performance Upgrade of Lead-Free Perovskite Solar Cells Using Cu ₂ ZnSn _{1–<i>x</i>} Ge _{<i>x</i>} S ₄ as a Hole Transport Layer: A Theoretical Simulation Approach. Journal of Physical Chemistry C, 2022, 126, 5847-5862.	1.5	6
39	Thermoluminescence and Optically Stimulated Luminescence Properties of <l>l²</l> -Irradiated TiO ₂ :Yb Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 1851-1857.	0.9	5
40	Synthesis and Characterization of SnS Nanoparticles through a Non-Aqueous Chemical Route for Depositing Photovoltaic Absorber Layers. Journal of Nano Research, 0, 28, 91-99.	0.8	4
41	Boosting the efficiency of Cd-free kesterite/kesterite tandem solar cell: A numerical simulation approach. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138, 115056.	1.3	3
42	Ge incorporation in kesterite thin films by solution processing route: An in-depth study of structural and optoelectronic properties. Journal of Alloys and Compounds, 2022, 921, 166184.	2.8	2
43	Cu2ZnGeS4 nanorods by solvothermal method: physical and photocatalytic properties. Journal of Materials Science: Materials in Electronics 2021, 32, 17282-17291	1.1	1