Donald M Kurtz Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7745336/publications.pdf

Version: 2024-02-01

32 papers

2,248 citations

430874 18 h-index 30 g-index

32 all docs 32 docs citations

times ranked

32

2085 citing authors

#	Article	lF	CITATIONS
1	Oxo- and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit. Chemical Reviews, 1990, 90, 585-606.	47.7	984
2	X-ray Crystal Structures ofMoorella thermoaceticaFprA. Novel Diiron Site Structure and Mechanistic Insights into a Scavenging Nitric Oxide Reductaseâ€,‡. Biochemistry, 2005, 44, 6492-6501.	2.5	131
3	Structural chemistry of hemerythrin. Coordination Chemistry Reviews, 1977, 24, 145-178.	18.8	125
4	A Flavodiiron Protein and High Molecular Weight Rubredoxin fromMoorella thermoaceticawith Nitric Oxide Reductase Activityâ€. Biochemistry, 2003, 42, 2806-2815.	2.5	121
5	Flavo-diiron enzymes: nitric oxide or dioxygen reductases?. Dalton Transactions, 2007, , 4115.	3.3	107
6	Pathway for H2O2 and O2 detoxification in Clostridium acetobutylicum. Microbiology (United) Tj ETQq0 0 0 rgB1	/Oyerlock	10 Tf 50 54
7	Insights into the Nitric Oxide Reductase Mechanism of Flavodiiron Proteins from a Flavin-Free Enzyme. Biochemistry, 2010, 49, 7040-7049.	2.5	78
8	A Flavo-Diiron Protein fromDesulfovibrio vulgariswith Oxidase and Nitric Oxide Reductase Activities. Evidence for an in Vivo Nitric Oxide Scavenging Functionâ€. Biochemistry, 2005, 44, 3572-3579.	2.5	71
9	A [2Fe-2S] Protein Encoded by an Open Reading Frame Upstream of theEscherichia coliBacterioferritin Geneâ€. Biochemistry, 1996, 35, 6297-6301.	2.5	70
10	The Nitric Oxide Reductase Mechanism of a Flavo-Diiron Protein: Identification of Active-Site Intermediates and Products. Journal of the American Chemical Society, 2014, 136, 7981-7992.	13.7	67
11	Characterization and Evolution of Anthranilate 1,2-Dioxygenase from Acinetobacter sp. Strain ADP1. Journal of Bacteriology, 2001, 183, 109-118.	2.2	56
12	Vibrational Analysis of Mononitrosyl Complexes in Hemerythrin and Flavodiiron Proteins: Relevance to Detoxifying NO Reductase. Journal of the American Chemical Society, 2012, 134, 6878-6884.	13.7	51
13	Trojan Horse for Light-Triggered Bifurcated Production of Singlet Oxygen and Fenton-Reactive Iron within Cancer Cells. Biomacromolecules, 2018, 19, 178-187.	5 . 4	40
14	A Diferrous-Dinitrosyl Intermediate in the N ₂ O-Generating Pathway of a Deflavinated Flavo-Diiron Protein. Biochemistry, 2014, 53, 5631-5637.	2.5	39
15	Histidine ligand variants of a flavo-diiron protein: effects on structure and activities. Journal of Biological Inorganic Chemistry, 2012, 17, 1231-1239.	2.6	32
16	Spectroscopy and DFT Calculations of a Flavo-diiron Enzyme Implicate New Diiron Site Structures. Journal of the American Chemical Society, 2017, 139, 12009-12019.	13.7	32
17	A Bacterial Hemerythrin Domain Regulates the Activity of a <i>Vibrio cholerae</i> Diguanylate Cyclase. Biochemistry, 2012, 51, 8563-8570.	2.5	31
18	Spectroscopy and DFT Calculations of Flavoâ€"Diiron Nitric Oxide Reductase Identify Bridging Structures of NO-Coordinated Diiron Intermediates. ACS Catalysis, 2018, 8, 11704-11715.	11.2	20

#	Article	IF	CITATIONS
19	Dioxygen and nitric oxide scavenging by Treponema denticola flavodiiron protein: a mechanistic paradigm for catalysis. Journal of Biological Inorganic Chemistry, 2015, 20, 603-613.	2.6	19
20	Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of <i>Thermotoga maritima</i> HD-GYP. Biochemistry, 2016, 55, 970-979.	2.5	17
21	Photosensitized H ₂ Production Using a Zinc Porphyrin-Substituted Protein, Platinum Nanoparticles, and Ascorbate with No Electron Relay: Participation of Good's Buffers. Inorganic Chemistry, 2017, 56, 4584-4593.	4.0	12
22	CD/MCD/VTVH-MCD Studies of <i>Escherichia coli</i> Bacterioferritin Support a Binuclear Iron Cofactor Site. Biochemistry, 2015, 54, 7010-7018.	2.5	11
23	The Catalytic Role of a Conserved Tyrosine in Nitric Oxide-Reducing Non-heme Diiron Enzymes. ACS Catalysis, 2020, 10, 8177-8186.	11.2	11
24	H ₂ O ₂ -dependent substrate oxidation by an engineered diiron site in a bacterial hemerythrin. Chemical Communications, 2014, 50, 3421-3423.	4.1	9
25	Photosensitized H ₂ generation from "one-pot―and "two-pot―assemblies of a zinc-porphyrin/platinum nanoparticle/protein scaffold. Dalton Transactions, 2016, 45, 630-638.	3.3	9
26	<i>Treponema denticola</i> Superoxide Reductase: In Vivo Role, in Vitro Reactivities, and a Novel [Fe(Cys) ₄] Site. Biochemistry, 2012, 51, 5601-5610.	2.5	8
27	Targeted cancer cell delivery of arsenate as a reductively activated prodrug. Journal of Biological Inorganic Chemistry, 2020, 25, 441-449.	2.6	7
28	Structural, Photophysical, and Photochemical Characterization of Zinc Protoporphyrin IX in a Dimeric Variant of an Iron Storage Protein: Insights into the Mechanism of Photosensitized H ₂ Generation. Journal of Physical Chemistry B, 2019, 123, 6740-6749.	2.6	5
29	Preparation of platinum nanoparticles using iron(ii) as reductant and photosensitized H2 generation on an iron storage protein scaffold. RSC Advances, 2020, 10, 5551-5559.	3.6	2
30	Structure of a Zinc Porphyrin-Substituted Bacterioferritin and Photophysical Properties of Iron Reduction. Biochemistry, 2020, 59, 1618-1629.	2.5	2
31	Protein Scaffolds For Lightâ€Activated Delivery Of Toxic Iron To Cancer Cells. FASEB Journal, 2013, 27, 808.1.	0.5	0
32	Towards the Nitric Oxide Reductase Mechanism of Flavodiiron Proteins. FASEB Journal, 2013, 27, .	0.5	0