Asfar S Azmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7745221/publications.pdf

Version: 2024-02-01

46918 32761 10,947 158 47 100 citations h-index g-index papers 166 166 166 17859 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer and Metastasis Reviews, 2013, 32, 623-642.	2.7	948
2	Broad targeting of resistance to apoptosis in cancer. Seminars in Cancer Biology, 2015, 35, S78-S103.	4.3	535
3	Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Seminars in Cancer Biology, 2015, 35, S25-S54.	4.3	468
4	Broad targeting of angiogenesis for cancer prevention and therapy. Seminars in Cancer Biology, 2015, 35, S224-S243.	4.3	375
5	Evolving role of uPA/uPAR system in human cancers. Cancer Treatment Reviews, 2008, 34, 122-136.	3.4	371
6	Metformin Inhibits Cell Proliferation, Migration and Invasion by Attenuating CSC Function Mediated by Deregulating miRNAs in Pancreatic Cancer Cells. Cancer Prevention Research, 2012, 5, 355-364.	0.7	317
7	Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resistance Updates, 2010, 13, 109-118.	6.5	313
8	Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer and Metastasis Reviews, 2020, 39, 1179-1203.	2.7	311
9	Pancreatic cancer: understanding and overcoming chemoresistance. Nature Reviews Gastroenterology and Hepatology, 2011, 8, 27-33.	8.2	303
10	Curcumin Analogue CDF Inhibits Pancreatic Tumor Growth by Switching on Suppressor microRNAs and Attenuating EZH2 Expression. Cancer Research, 2012, 72, 335-345.	0.4	285
11	Cancer prevention and therapy through the modulation of the tumor microenvironment. Seminars in Cancer Biology, 2015, 35, S199-S223.	4.3	285
12	Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Seminars in Cancer Biology, 2015, 35, S5-S24.	4.3	231
13	Oxidative breakage of cellular DNA by plant polyphenols: A putative mechanism for anticancer properties. Seminars in Cancer Biology, 2007, 17, 370-376.	4.3	221
14	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	4.3	220
15	Overview of Cancer Stem Cells (CSCs) and Mechanisms of Their Regulation: Implications for Cancer Therapy. Current Protocols in Pharmacology, 2013, 61, Unit 14.25.	4.0	210
16	Overâ€expression of FoxM1 leads to epithelial–mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. Journal of Cellular Biochemistry, 2011, 112, 2296-2306.	1.2	199
17	Review on Molecular and Therapeutic Potential of Thymoquinone in Cancer. Nutrition and Cancer, 2010, 62, 938-946.	0.9	198
18	A Novel Small-Molecule Inhibitor of Mcl-1 Blocks Pancreatic Cancer Growth <i>In Vitro</i> and <i>In Vivo</i> Molecular Cancer Therapeutics, 2014, 13, 565-575.	1.9	166

#	Article	IF	CITATIONS
19	Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 258-267.	3.3	163
20	Hypoxia-Induced Aggressiveness of Pancreatic Cancer Cells Is Due to Increased Expression of VEGF, IL-6 and miR-21, Which Can Be Attenuated by CDF Treatment. PLoS ONE, 2012, 7, e50165.	1.1	152
21	KRAS G12C Game of Thrones, which direct KRAS inhibitor will claim the iron throne?. Cancer Treatment Reviews, 2020, 84, 101974.	3.4	143
22	Hypoxia Induced Aggressiveness of Prostate Cancer Cells Is Linked with Deregulated Expression of VEGF, IL-6 and miRNAs That Are Attenuated by CDF. PLoS ONE, 2012, 7, e43726.	1.1	116
23	The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 272-296.	3.3	116
24	The nuclear export protein XPO1 $\hat{a} \in \mathbb{C}^n$ from biology to targeted therapy. Nature Reviews Clinical Oncology, 2021, 18, 152-169.	12.5	114
25	Nonâ€peptidic small molecule inhibitors against Bclâ€2 for cancer therapy. Journal of Cellular Physiology, 2009, 218, 13-21.	2.0	109
26	Selective Inhibitors of Nuclear Export Block Pancreatic Cancer Cell Proliferation and Reduce Tumor Growth in Mice. Gastroenterology, 2013, 144, 447-456.	0.6	109
27	Proof of Concept: Network and Systems Biology Approaches Aid in the Discovery of Potent Anticancer Drug Combinations. Molecular Cancer Therapeutics, 2010, 9, 3137-3144.	1.9	104
28	Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 122-130.	3.3	99
29	Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Seminars in Cancer Biology, 2015, 35, S55-S77.	4.3	95
30	A multi-targeted approach to suppress tumor-promoting inflammation. Seminars in Cancer Biology, 2015, 35, \$151-\$184.	4.3	95
31	Emerging Bcl-2 inhibitors for the treatment of cancer. Expert Opinion on Emerging Drugs, 2011, 16, 59-70.	1.0	92
32	Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death. Oncotarget, 2016, 7, 78883-78895.	0.8	92
33	Downâ€regulation of Notchâ€1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. Journal of Cellular Biochemistry, 2011, 112, 78-88.	1.2	81
34	Structure-Activity Studies on Therapeutic Potential of Thymoquinone Analogs in Pancreatic Cancer. Pharmaceutical Research, 2010, 27, 1146-1158.	1.7	77
35	Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids and Surfaces B: Biointerfaces, 2018, 167, 8-19.	2.5	75
36	An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Molecular Cancer, 2009, 8, 115.	7.9	71

#	Article	IF	CITATIONS
37	Snail nuclear transport: The gateways regulating epithelial-to-mesenchymal transition?. Seminars in Cancer Biology, 2014, 27, 39-45.	4.3	70
38	Novel p21-Activated Kinase 4 (PAK4) Allosteric Modulators Overcome Drug Resistance and Stemness in Pancreatic Ductal Adenocarcinoma. Molecular Cancer Therapeutics, 2017, 16, 76-87.	1.9	69
39	Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer Research, 2011, 31, 1105-13.	0.5	66
40	MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. European Journal of Cancer, 2010, 46, 1122-1131.	1.3	65
41	Selective inhibitors of nuclear export for the treatment of non-Hodgkin's lymphomas. Haematologica, 2013, 98, 1098-1106.	1.7	59
42	Liquid biopsy for therapy monitoring in early-stage non-small cell lung cancer. Molecular Cancer, 2021, 20, 82.	7.9	58
43	Resveratrolâ€induced apoptosis is enhanced in low pH environments associated with cancer. Journal of Cellular Physiology, 2012, 227, 1493-1500.	2.0	57
44	<scp>microRNA</scp> â€based diagnostic and therapeutic applications in cancer medicine. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1662.	3.2	55
45	FoxM1 is a Novel Target of a Natural Agent in Pancreatic Cancer. Pharmaceutical Research, 2010, 27, 1159-1168.	1.7	54
46	Pancreatic Cancer Stem-like Cells Display Aggressive Behavior Mediated via Activation of FoxQ1. Journal of Biological Chemistry, 2014, 289, 14520-14533.	1.6	53
47	Cellular DNA breakage by soy isoflavone genistein and its methylated structural analogue biochanin A. Molecular Nutrition and Food Research, 2009, 53, 1376-1385.	1.5	52
48	Targeting CSCs in Tumor Microenvironment: The Potential Role of ROS-Associated miRNAs in Tumor Aggressiveness. Current Stem Cell Research and Therapy, 2013, 9, 22-35.	0.6	50
49	Progress in Nanotechnology Based Approaches to Enhance the Potential of Chemopreventive Agents. Cancers, 2011, 3, 428-445.	1.7	48
50	Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers. Annals of Translational Medicine, 2014, 2, 59.	0.7	48
51	Nuclear retention of Fbw7 by specific inhibitors of nuclear export leads to Notch1 degradation in pancreatic cancer. Oncotarget, 2014, 5, 3444-3454.	0.8	47
52	miRNA and Gene Expression in Pancreatic Ductal Adenocarcinoma. American Journal of Pathology, 2019, 189, 58-70.	1.9	46
53	Targeting CSC-Related miRNAs for Cancer Therapy by Natural Agents. Current Drug Targets, 2012, 13, 1858-1868.	1.0	45
54	Network Modeling of MDM2 Inhibitor-Oxaliplatin Combination Reveals Biological Synergy in wt-p53 solid tumors. Oncotarget, 2011, 2, 378-392.	0.8	45

#	Article	IF	Citations
55	Plumbagin induces cell death through a copper-redox cycle mechanism in human cancer cells. Mutagenesis, 2009, 24, 413-418.	1.0	44
56	Ras and exosome signaling. Seminars in Cancer Biology, 2019, 54, 131-137.	4.3	44
57	Exportin 1 (XPO1) inhibition leads to restoration of tumor suppressor miR-145 and consequent suppression of pancreatic cancer cell proliferation and migration. Oncotarget, 2017, 8, 82144-82155.	0.8	43
58	Activated K-ras and INK4a/Arf Deficiency Cooperate During the Development of Pancreatic Cancer by Activation of Notch and NF-ÎB Signaling Pathways. PLoS ONE, 2011, 6, e20537.	1.1	43
59	Network pharmacology for cancer drug discovery: are we there yet?. Future Medicinal Chemistry, 2012, 4, 939-941.	1.1	42
60	Exportin 1 inhibition as antiviral therapy. Drug Discovery Today, 2020, 25, 1775-1781.	3.2	41
61	Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer and Metastasis Reviews, 2021, 40, 819-835.	2.7	41
62	Class I and Class II Histone Deacetylases Are Potential Therapeutic Targets for Treating Pancreatic Cancer. PLoS ONE, 2012, 7, e52095.	1.1	41
63	Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: Implications for an anticancer mechanism. Free Radical Research, 2008, 42, 764-772.	1.5	40
64	Old Wine in a New Bottle: The Warburg Effect and Anticancer Mechanisms of Resveratrol. Current Pharmaceutical Design, 2012, 18, 1645-1654.	0.9	40
65	Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opinion on Therapeutic Targets, 2012, 16, 1041-1054.	1.5	40
66	Activated Kâ€Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. Journal of Cellular Physiology, 2013, 228, 556-562.	2.0	40
67	Nuclear Export Mediated Regulation of MicroRNAs: Potential Target for Drug Intervention. Current Drug Targets, 2013, 14, 1094-1100.	1.0	40
68	Gastrointestinal stromal tumor: a review of current and emerging therapies. Cancer and Metastasis Reviews, 2021, 40, 625-641.	2.7	39
69	The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA. Toxicology, 2008, 249, 19-25.	2.0	37
70	Reactivation of p53 by Novel MDM2 Inhibitors: Implications for Pancreatic Cancer Therapy. Current Cancer Drug Targets, 2010, 10, 319-331.	0.8	37
71	KRAS Inhibitors– yes but what next? Direct targeting of KRAS– vaccines, adoptive T cell therapy and beyond. Cancer Treatment Reviews, 2021, 101, 102309.	3.4	37
72	The evolution into personalized therapies in pancreatic ductal adenocarcinoma: challenges and opportunities. Expert Review of Anticancer Therapy, 2018, 18, 131-148.	1.1	36

#	Article	IF	Citations
73	Small Molecule Inhibitors of Bcl-2 Family Proteins for Pancreatic Cancer Therapy. Cancers, 2011, 3, 1527-1549.	1.7	31
74	Differentially Expressed miRNAs in Cancer-Stem-Like Cells: Markers for Tumor Cell Aggressiveness of Pancreatic Cancer. Stem Cells and Development, 2014, 23, 1947-1958.	1.1	31
75	F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities. Seminars in Cancer Biology, 2016, 36, 95-104.	4.3	29
76	Targeting Nuclear Exporter Protein XPO1/CRM1 in Gastric Cancer. International Journal of Molecular Sciences, 2019, 20, 4826.	1.8	29
77	Targeting ERK enhances the cytotoxic effect of the novel PI3K and mTOR dual inhibitor VS-5584 in preclinical models of pancreatic cancer. Oncotarget, 2017, 8, 44295-44311.	0.8	29
78	Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition. Scientific Reports, 2015, 5, 16077.	1.6	28
79	Anti-tumor activity of selective inhibitor of nuclear export (SINE) compounds, is enhanced in non-Hodgkin lymphoma through combination with mTOR inhibitor and dexamethasone. Cancer Letters, 2016, 383, 309-317.	3.2	28
80	Gut microbiome and response to checkpoint inhibitors in non-small cell lung cancerâ€"A review. Critical Reviews in Oncology/Hematology, 2020, 145, 102841.	2.0	28
81	Preclinical Assessment with Clinical Validation of Selinexor with Gemcitabine and Nab-Paclitaxel for the Treatment of Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2020, 26, 1338-1348.	3.2	28
82	The Role of microRNAs in the Diagnosis and Treatment of Pancreatic Adenocarcinoma. Journal of Clinical Medicine, 2016, 5, 59.	1.0	27
83	Calcium Release-Activated Calcium (CRAC) Channel Inhibition Suppresses Pancreatic Ductal Adenocarcinoma Cell Proliferation and Patient-Derived Tumor Growth. Cancers, 2020, 12, 750.	1.7	27
84	Targeting Rho GTPase effector p21 activated kinase 4 (PAK4) suppresses p-Bad-microRNA drug resistance axis leading to inhibition of pancreatic ductal adenocarcinoma proliferation. Small GTPases, 2019, 10, 367-377.	0.7	26
85	Network insights on oxaliplatin antiâ€cancer mechanisms. Clinical and Translational Medicine, 2012, 1, 26.	1.7	25
86	Nab-paclitaxel: potential for the treatment of advanced pancreatic cancer. OncoTargets and Therapy, 2014, 7, 187.	1.0	25
87	Adopting Network Pharmacology for Cancer Drug Discovery. Current Drug Discovery Technologies, 2013, 10, 95-105.	0.6	25
88	Unveiling the Role of Nuclear Transport in Epithelial-to-Mesenchymal Transition. Current Cancer Drug Targets, 2013, 13, 906-914.	0.8	24
89	Gastric Cancer Heterogeneity and Clinical Outcomes. Technology in Cancer Research and Treatment, 2020, 19, 153303382093547.	0.8	24
90	Prior exposure to restraint stress enhances 7,12-dimethylbenz(a)anthracene (DMBA) induced DNA damage in rats. FEBS Letters, 2006, 580, 3995-3999.	1.3	23

#	Article	IF	CITATIONS
91	The immunological contribution of NF- \hat{l}° B within the tumor microenvironment: A potential protective role of zinc as an anti-tumor agent. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1825, 160-172.	3.3	23
92	Targeting XPO1 and PAK4 in 8505C Anaplastic Thyroid Cancer Cells: Putative Implications for Overcoming Lenvatinib Therapy Resistance. International Journal of Molecular Sciences, 2020, 21, 237.	1.8	23
93	PAK4-NAMPT Dual Inhibition as a Novel Strategy for Therapy Resistant Pancreatic Neuroendocrine Tumors. Cancers, 2019, 11, 1902.	1.7	22
94	Pharmacotherapeutic strategies for treating pancreatic cancer: advances and challenges. Expert Opinion on Pharmacotherapy, 2019, 20, 535-546.	0.9	22
95	Aberrant epigenetic grooming of miRNAs in pancreatic cancer: a systems biology perspective. Epigenomics, 2011, 3, 747-759.	1.0	19
96	Targeting Cancer at the Nuclear Pore. Journal of Clinical Oncology, 2016, 34, 4180-4182.	0.8	18
97	Natural agents inhibit colon cancer cell proliferation and alter microbial diversity in mice. PLoS ONE, 2020, 15, e0229823.	1.1	18
98	Exosomal microRNA in Pancreatic Cancer Diagnosis, Prognosis, and Treatment: From Bench to Bedside. Cancers, 2021, 13, 2777.	1.7	18
99	PAR-4 as a possible new target for pancreatic cancer therapy. Expert Opinion on Therapeutic Targets, 2010, 14, 611-620.	1.5	17
100	Rectifying cancer drug discovery through network pharmacology. Future Medicinal Chemistry, 2014, 6, 529-539.	1.1	17
101	Nuclear Export Inhibition for Pancreatic Cancer Therapy. Cancers, 2018, 10, 138.	1.7	17
102	Selinexor in Combination with R-CHOP for Frontline Treatment of Non-Hodgkin Lymphoma: Results of a Phase I Study. Clinical Cancer Research, 2021, 27, 3307-3316.	3.2	17
103	Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property. F1000Research, 2013, 2, 135.	0.8	17
104	Understanding XPO1 Target Networks Using Systems Biology and Mathematical Modeling. Current Pharmaceutical Design, 2014, 20, 56-65.	0.9	17
105	Systems analysis reveals a transcriptional reversal of the mesenchymal phenotype induced by SNAIL-inhibitor GN-25. BMC Systems Biology, 2013, 7, 85.	3.0	16
106	Circular RNAs in acute myeloid leukemia. Molecular Cancer, 2021, 20, 149.	7.9	16
107	Association of ALDH1A1-NEK-2 axis in cisplatin resistance in ovarian cancer cells. Heliyon, 2020, 6, e05442.	1.4	15
108	Network modeling of CDF treated pancreatic cancer cells reveals a novel c-myc-p73 dependent apoptotic mechanism. American Journal of Translational Research (discontinued), 2011, 3, 374-82.	0.0	15

#	Article	IF	CITATIONS
109	PAK4-NAMPT Dual Inhibition Sensitizes Pancreatic Neuroendocrine Tumors to Everolimus. Molecular Cancer Therapeutics, 2021, 20, 1836-1845.	1.9	14
110	Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on IncRNAs, circRNAs, and piRNAs. Cancers, 2021, 13, 4161.	1.7	14
111	Rho GTPase effectors and NAD metabolism in cancer immune suppression. Expert Opinion on Therapeutic Targets, 2018, 22, 9-17.	1.5	13
112	Can network pharmacology rescue neutraceutical cancer research?. Drug Discovery Today, 2012, 17, 807-809.	3.2	12
113	Pan-Bcl-2 Inhibitor AT-101 Enhances Tumor Cell Killing by EGFR Targeted T Cells. PLoS ONE, 2012, 7, e47520.	1.1	12
114	Inhibitor of the Nuclear Transport Protein XPO1 Enhances the Anticancer Efficacy of KRAS G12C Inhibitors in Preclinical Models of KRAS G12C–Mutant Cancers. Cancer Research Communications, 2022, 2, 342-352.	0.7	12
115	The evolving role of nuclear transporters in cancer. Seminars in Cancer Biology, 2014, 27, 1-2.	4.3	11
116	Down-regulation of AR splice variants through XPO1 suppression contributes to the inhibition of prostate cancer progression. Oncotarget, 2018, 9, 35327-35342.	0.8	11
117	Selective inhibition of nuclear export: a promising approach in the shifting treatment paradigms for hematological neoplasms. Leukemia, 2022, 36, 601-612.	3.3	11
118	Prooxidant anticancer activity of plant-derived polyphenolic compounds: An underappreciated phenomenon., 2020,, 221-236.		10
119	Network Insights into the Genes Regulated by Hepatocyte Nuclear Factor 4 in Response to Drug Induced Perturbations: A Review. Current Drug Discovery Technologies, 2013, 10, 147-154.	0.6	10
120	Network Perspectives on HDM2 Inhibitor Chemotherapy Combinations. Current Pharmaceutical Design, 2011, 17, 640-652.	0.9	9
121	DNA-Methylation-Caused Downregulation of miR-30 Contributes to the High Expression of XPO1 and the Aggressive Growth of Tumors in Pancreatic Ductal Adenocarcinoma. Cancers, 2019, 11, 1101.	1.7	9
122	Connecting the Human Microbiome and Pancreatic Cancer. Cancer and Metastasis Reviews, 2022, 41, 317-331.	2.7	9
123	Pre-clinical anti-tumor activity of Bruton's Tyrosine Kinase inhibitor in Hodgkin's Lymphoma cellular and subcutaneous tumor model. Heliyon, 2019, 5, e02290.	1.4	8
124	Systems Biology Approaches to Pancreatic Cancer Detection, Prevention and Treatment. Current Pharmaceutical Design, 2014, 20, 73-80.	0.9	8
125	PAK4 and NAMPT as Novel Therapeutic Targets in Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, and Mantle Cell Lymphoma. Cancers, 2022, 14, 160.	1.7	8
126	KRASG12C inhibitors on the horizon. Future Medicinal Chemistry, 2019, 11, 923-925.	1.1	7

#	Article	IF	CITATIONS
127	Restraint stress abates the antioxidant potential of melatonin on dimethyl benz (a) anthracene (DMBA) induced carcinogenesis. Medical Oncology, 2020, 37, 96.	1.2	7
128	Editorial (Hot Topic: Network Pharmacology: An Emerging Field in Cancer Drug Discovery). Current Drug Discovery Technologies, 2013, 10, 93-94.	0.6	6
129	Nuclear Export Inhibitor KPT-8602 Synergizes with PARP Inhibitors in Escalating Apoptosis in Castration Resistant Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 6676.	1.8	5
130	Prostate cancer stem cells: molecular characterization for targeted therapy. Asian Journal of Andrology, 2012, 14, 659-660.	0.8	5
131	Abstract 1358: p21 activated kinase 4 (pak4) as a novel therapeutic target for non-hodgkin's lymphoma. Cancer Research, 2017, 77, 1358-1358.	0.4	5
132	Systems and Network Pharmacology Approaches to Cancer Stem Cells Research and Therapy. Journal of Stem Cell Research & Therapy, 2013, 01, .	0.3	5
133	MDM2 Inhibitors for Pancreatic Cancer Therapy. Mini-Reviews in Medicinal Chemistry, 2010, 10, 518-526.	1.1	4
134	Editorial [Hot Topic: Pharmaceutical Reactivation of p53 Pathways in Cancer (Executive Guest Editor:) Tj ETQq0	0 OrgBT /0	Overlock 10 T
135	Nuclear export mechanisms of circular RNAs: size does matter. Non-coding RNA Investigation, 2018, 2, 52-52.	0.6	4
136	Regulation of KRAS-PAK4 Axis by MicroRNAs in Cancer. Current Pharmaceutical Design, 2014, 20, 5275-5278.	0.9	4
137	p21-activated kinase 4: a druggable target in the elusive oncogenic KRAS pathway?. Future Medicinal Chemistry, 2015, 7, 5-7.	1.1	3
138	Impact of XPO1 mutations on survival outcomes in metastatic non-small cell lung cancer (NSCLC). Lung Cancer, 2021, 160, 92-98.	0.9	3
139	Attenuation of Multifocal Cell Survival Signaling by Bioactive Phytochemicals in the Prevention and Therapy of Cancer. Evidence-based Anticancer Complementary and Alternative Medicine, 2013, , 269-310.	0.1	2
140	Updates and new directions in the use of radiation therapy for the treatment of pancreatic adenocarcinoma: dose, sensitization, and novel technology. Cancer and Metastasis Reviews, 2021, 40, 879-889.	2.7	2
141	Clinical progress of KRAS-targeted therapies: what next?. Future Medicinal Chemistry, 0, , .	1.1	2
142	Editorial (Thematic Issue: Systems and Network Biology in Pharmaceutical Drug Discovery). Current Pharmaceutical Design, 2014, 20, 2-3.	0.9	1
143	Systems and Network Pharmacology Strategies for Pancreatic Ductal Adenocarcinoma Therapy. , 2014, , 405-425.		1
144	Abstract 1058: Inhibition of nuclear transport protein XPO1 potentiates the effect of KRASG12Cinhibitors. , 2021, , .		1

#	Article	IF	Citations
145	Abstract 1756: Preclinical activity in non-Hodgkin's lymphoma of Selinexor, a selective inhibitor of nuclear export (SINE), is enhanced through combination with standard-of-care therapies., 2015,,.		1
146	Abstract 4688: Overcoming drug resistance and stemness in oncogenic kras driven pancreatic ductal adenocarcinoma through PAK4 inhibition. , $2015, , .$		1
147	Abstract B38: Clinical translation of nuclear export inhibitor in metastatic pancreatic cancer., 2016,,		1
148	Systems and Network Biology to Investigate Epigenetic De-regulatory Mechanisms of MicroRNAs in Pancreatic Cancer., 2013,, 1-12.		0
149	Providing activation-induced cytidine deaminase (AID) to nuclear export inhibitors. Response to: "Complex downstream effects of nuclear export inhibition in B-cell lymphomas: a possible role for activation-induced cytidine deaminase". Haematologica, 2013, 98, e123-e123.	1.7	0
150	Prioritizing Diagnostic, Prognostic, and Therapeutic MicroRNAs in Pancreatic Cancer., 2014, , 345-363.		0
151	The Biological Roles of MicroRNAs in Cancer Stem Cells. , 2014, , 295-320.		0
152	Systems Biology of Pancreatic Cancer Stem Cells. , 2014, , 297-322.		0
153	Opening a Pandora's (F)-box in cancer. Seminars in Cancer Biology, 2016, 36, 1-2.	4.3	0
154	Some chinks in RAS armor. Seminars in Cancer Biology, 2019, 54, iii-iv.	4.3	0
155	Network Pharmacology: An Emerging Area in Anti-Cancer Drug Discovery. , 2012, , 393-418.		0
156	The Biology of the Deadly Love Connection Between Obesity, Diabetes, and Breast Cancer., 2013, , 117-142.		0
157	Systems Biology Approaches in the Design of Effective miRNA-Targeted Therapeutics. , 2014, , 327-337.		0
158	Abstract 5315: Anti-tumor activity of KRASG12C inhibitors is enhanced when combined with Cdc42 effector p21-activated kinase 4 targeting agents. Cancer Research, 2022, 82, 5315-5315.	0.4	0