Daniel M Weinberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7745150/publications.pdf

Version: 2024-02-01

101 papers 6,983 citations

34 h-index 71685 **76** g-index

130 all docs

130 docs citations

130 times ranked

9676 citing authors

#	Article	IF	CITATIONS
1	Odds of Testing Positive for SARS-CoV-2 Following Receipt of 3 vs 2 Doses of the BNT162b2 mRNA Vaccine. JAMA Internal Medicine, 2022, 182, 179.	5.1	128
2	Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel. Science, 2022, 375, 1151-1154.	12.6	109
3	Reemergence of Invasive Pneumococcal Disease in Germany During the Spring and Summer of 2021. Clinical Infectious Diseases, 2022, 75, 1149-1153.	5 . 8	37
4	Relative timing of respiratory syncytial virus epidemics in summer 2021 across the United States was similar to a typical winter season. Influenza and Other Respiratory Viruses, 2022, 16, 617-620.	3.4	9
5	Rapid emergence of SARS-CoV-2 Omicron variant is associated with an infection advantage over Delta in vaccinated persons. Med, 2022, 3, 325-334.e4.	4.4	60
6	Decline in Pneumococcal Disease in Young Children During the Coronavirus Disease 2019 (COVID-19) Pandemic in Israel Associated With Suppression of Seasonal Respiratory Viruses, Despite Persistent Pneumococcal Carriage: A Prospective Cohort Study. Clinical Infectious Diseases, 2022, 75, e1154-e1164.	5 . 8	95
7	The Pneumococcus–Respiratory Virus Connection—Unexpected Lessons From the COVID-19 Pandemic. JAMA Network Open, 2022, 5, e2218966.	5. 9	8
8	Declines in Pneumonia Mortality Following the Introduction of Pneumococcal Conjugate Vaccines in Latin American and Caribbean Countries. Clinical Infectious Diseases, 2021, 73, 306-313.	5 . 8	24
9	Differences and Temporal Changes in Risk of Invasive Pneumococcal Disease in Adults with Hematological Malignancies: Results from a Nationwide 16-Year Cohort Study. Clinical Infectious Diseases, 2021, 72, 463-471.	5. 8	23
10	Serotype Patterns of Pneumococcal Disease in Adults Are Correlated With Carriage Patterns in Older Children. Clinical Infectious Diseases, 2021, 72, e768-e775.	5 . 8	10
11	Effect of ten-valent pneumococcal conjugate vaccine introduction on pneumonia hospital admissions in Fiji: a time-series analysis. The Lancet Global Health, 2021, 9, e91-e98.	6.3	11
12	Determining the serotype composition of mixed samples of pneumococcus using whole-genome sequencing. Microbial Genomics, 2021, 7, .	2.0	10
13	Estimated impact of the pneumococcal conjugate vaccine on pneumonia mortality in South Africa, 1999 through 2016: An ecological modelling study. PLoS Medicine, 2021, 18, e1003537.	8.4	21
14	Incorporating Information on Control Diseases Across Space and Time to Improve Estimation of the Population-level Impact of Vaccines. Epidemiology, 2021, 32, 360-367.	2.7	1
15	Assessment and optimization of respiratory syncytial virus prophylaxis in Connecticut, 1996–2013. Scientific Reports, 2021, 11, 10684.	3.3	3
16	Community factors associated with local epidemic timing of respiratory syncytial virus: A spatiotemporal modeling study. Science Advances, 2021, 7, .	10.3	14
17	Mapping partner drug resistance to guide antimalarial combination therapy policies in sub-Saharan Africa. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
18	Excess Deaths in Mexico City and New York City During the COVID-19 Pandemic, March to August 2020. American Journal of Public Health, 2021, 111, e1-e4.	2.7	4

#	Article	IF	CITATIONS
19	Evidence for multiple cases of recurrent <i>Legionella</i> infection: a Danish national surveillance study. Thorax, 2021, 76, 826-828.	5.6	0
20	Excess Cerebrovascular Mortality in the United States During the COVID-19 Pandemic. Stroke, 2021, 52, 563-572.	2.0	30
21	OUP accepted manuscript. American Journal of Epidemiology, 2021, , .	3.4	1
22	Trends in Precancerous Cervical Lesions by Area-Based Measures of Poverty, Race, and Ethnicity, Connecticut, 2008-2018. Public Health Reports, 2021, , 003335492110563.	2.5	0
23	1321. Acquisition and Transmission of <i>Streptococcus pneumoniae</i> in Individuals Over the Age of 60 Years Residing in New Haven, CT, USA. Open Forum Infectious Diseases, 2021, 8, S749-S749.	0.9	0
24	301. Detection of Pneumococcal Pneumonia During SARS-CoV-2 Infection. Open Forum Infectious Diseases, 2021, 8, S257-S257.	0.9	0
25	Estimation of the Timing and Intensity of Reemergence of Respiratory Syncytial Virus Following the COVID-19 Pandemic in the US. JAMA Network Open, 2021, 4, e2141779.	5.9	61
26	Pneumococcal Vaccines for Adults: What's Next?. Clinical Infectious Diseases, 2020, 70, 2493-2495.	5.8	5
27	Identifying signatures of the impact of rotavirus vaccines on hospitalizations using sentinel surveillance data from Latin American countries. Vaccine, 2020, 38, 323-329.	3.8	6
28	Correlates of Nonrandom Patterns of Serotype Switching in Pneumococcus. Journal of Infectious Diseases, 2020, 221, 1669-1676.	4.0	4
29	Excess Deaths From COVID-19 and Other Causes, March-July 2020. JAMA - Journal of the American Medical Association, 2020, 324, 1562.	7.4	259
30	Impact of pneumococcal conjugate vaccine on pneumonia hospitalization and mortality in children and elderly in Ecuador: Time series analyses. Vaccine, 2020, 38, 7033-7039.	3.8	10
31	Evaluating post-vaccine expansion patterns of pneumococcal serotypes. Vaccine, 2020, 38, 7756-7763.	3.8	13
32	Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nature Biotechnology, 2020, 38, 1164-1167.	17.5	785
33	Navigating Through Health Care Data Disrupted by the COVID-19 Pandemic. JAMA Internal Medicine, 2020, 180, 1569.	5.1	9
34	Estimating Serotype-specific Efficacy of Pneumococcal Conjugate Vaccines Using Hierarchical Models. Epidemiology, 2020, 31, 259-262.	2.7	6
35	Upper respiratory tract colonization with <i>Streptococcus pneumoniae </i> ii adults. Expert Review of Vaccines, 2020, 19, 353-366.	4.4	31
36	Excess Deaths From COVID-19 and Other Causes, March-April 2020. JAMA - Journal of the American Medical Association, 2020, 324, 510.	7.4	396

#	Article	IF	CITATIONS
37	Estimation of Excess Deaths Associated With the COVID-19 Pandemic in the United States, March to May 2020. JAMA Internal Medicine, 2020, 180, 1336.	5.1	374
38	Estimating the power to detect a change caused by a vaccine from time series data. Gates Open Research, 2020, 4, 27.	1.1	1
39	Estimating the power to detect a change caused by a vaccine from time series data. Gates Open Research, 2020, 4, 27.	1.1	O
40	Impact of pneumococcal conjugate vaccine uptake on childhood pneumonia mortality across income levels in Brazil, Colombia, and Peru. Gates Open Research, 2020, 4, 136.	1.1	4
41	762. Climate Change and the Seroprevalence of Borrelia burgdorferi over 25 Years in Rhode Island. Open Forum Infectious Diseases, 2020, 7, S427-S427.	0.9	0
42	Prevalence of Infection and Co-Infection and Presence of Rickettsial Endosymbionts in (Acari:) Tj ETQq0 0 0 rgBT	/Oyerlock	19 Tf 50 542
43	Seroprevalence, Risk Factors, and Rodent Reservoirs of Leptospirosis in an Urban Community of Puerto Rico, 2015. Journal of Infectious Diseases, 2019, 220, 1489-1497.	4.0	23
44	Using pneumococcal carriage studies to monitor vaccine impact in low- and middle-income countries. Vaccine, 2019, 37, 6299-6309.	3.8	26
45	Effect of pneumococcal conjugate vaccine introduction on childhood pneumonia mortality in Brazil: a retrospective observational study. The Lancet Global Health, 2019, 7, e249-e256.	6.3	48
46	Estimating the True Burden of Legionnaires' Disease. American Journal of Epidemiology, 2019, 188, 1686-1694.	3.4	23
47	Variation of growth characteristics of pneumococcus with environmental conditions. BMC Microbiology, 2019, 19, 304.	3.3	13
48	Challenges in Estimating the Impact of Vaccination with Sparse Data. Epidemiology, 2019, 30, 61-68.	2.7	19
49	Association Between the Decline in Pneumococcal Disease in Unimmunized Adults and Vaccine-Derived Protection Against Colonization in Toddlers and Preschool-Aged Children. American Journal of Epidemiology, 2019, 188, 160-168.	3.4	45
50	Prevention of Pneumococcal Infections in Adults Using Conjugate Vaccines: No Easy Answers. Clinical Infectious Diseases, 2019, 69, 50-51.	5.8	3
51	Differences in the Impact of Pneumococcal Serotype Replacement in Individuals With and Without Underlying Medical Conditions. Clinical Infectious Diseases, 2019, 69, 100-106.	5.8	15
52	Reply to Rucinski et al. Journal of Infectious Diseases, 2018, 218, 670-671.	4.0	0
53	Developing Better Pneumococcal Vaccines for Adults. JAMA Internal Medicine, 2017, 177, 303.	5.1	12
54	Challenges to estimating vaccine impact using hospitalization data. Vaccine, 2017, 35, 118-124.	3.8	22

#	Article	IF	CITATIONS
55	Estimating the population-level impact of vaccines using synthetic controls. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1524-1529.	7.1	59
56	Improving Assessments of Population-level Vaccine Impact. Epidemiology, 2017, 28, 233-236.	2.7	9
57	Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell, 2017, 169, 597-609.e11.	28.9	279
58	Filling evidence gaps on the impact of pneumococcal vaccines. Lancet Infectious Diseases, The, 2017, 17, 888-889.	9.1	4
59	Declines in Human Papillomavirus (HPV)–Associated High-Grade Cervical Lesions After Introduction of HPV Vaccines in Connecticut, United States, 2008–2015. Clinical Infectious Diseases, 2017, 65, 884-889.	5 . 8	24
60	Identifying climate drivers of infectious disease dynamics: recent advances and challenges ahead. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170901.	2.6	91
61	Impact of Pneumococcal Conjugate Vaccines on Pneumonia Hospitalizations in High- and Low-Income Subpopulations in Brazil. Clinical Infectious Diseases, 2017, 65, 1813-1818.	5. 8	21
62	Bayesian Model Averaging with Change Points to Assess the Impact of Vaccination and Public Health Interventions. Epidemiology, 2017, 28, 889-897.	2.7	17
63	Pan-serotype Reduction in Progression of Streptococcus pneumoniae to Otitis Media After Rollout of Pneumococcal Conjugate Vaccines. Clinical Infectious Diseases, 2017, 65, 1853-1861.	5.8	23
64	The burden of typhoid fever in low- and middle-income countries: A meta-regression approach. PLoS Neglected Tropical Diseases, 2017, 11, e0005376.	3.0	212
65	Nasopharyngeal carriage of Streptococcus pneumoniae among children in an urban setting in Brazil prior to PCV10 introduction. Vaccine, 2016, 34, 791-797.	3.8	18
66	Relating Pneumococcal Carriage Among Children to Disease Rates Among Adults Before and After the Introduction of Conjugate Vaccines. American Journal of Epidemiology, 2016, 183, 1055-1062.	3.4	45
67	Density, Serotype Diversity, and Fitness of <i>Streptococcus pneumoniae </i> in Upper Respiratory Tract Cocolonization With Nontypeable <i>Haemophilus influenzae </i> Journal of Infectious Diseases, 2016, 214, 1411-1420.	4.0	25
68	Local variations in the timing of RSV epidemics. BMC Infectious Diseases, 2016, 16, 674.	2.9	15
69	Association Between Local Pediatric Vaccination Rates and Patterns of Pneumococcal Disease in Adults. Journal of Infectious Diseases, 2016, 213, 509-515.	4.0	11
70	Influenza-like illness in an urban community of Salvador, Brazil: incidence, seasonality and risk factors. BMC Infectious Diseases, 2016, 16, 125.	2.9	13
71	Epidemiological Markers for Interactions Among <i>Streptococcus pneumoniae</i> , <i>Haemophilus influenzae</i> , and <i>Staphylococcus aureus</i> in Upper Respiratory Tract Carriage. Journal of Infectious Diseases, 2016, 213, 1596-1605.	4.0	49
72	Trends in Hospitalizations With Primary Varicella and Herpes Zoster During the Prevaricella and Initial Postvaricella and Herpes Zoster Vaccine Eras, Connecticut, 1994–2012. Open Forum Infectious Diseases, 2015, 2, ofv001.	0.9	12

#	Article	IF	CITATIONS
73	Reduced-Dose Schedule of Prophylaxis Based on Local Data Provides Near-Optimal Protection Against Respiratory Syncytial Virus. Clinical Infectious Diseases, 2015, 61, 506-514.	5.8	20
74	Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data. PLoS Medicine, 2015, 12, e1001776.	8.4	143
75	Effect of Serotype on Pneumococcal Competition in a Mouse Colonization Model. MBio, 2015, 6, e00902-15.	4.1	47
76	Pneumococcal conjugate vaccines for adults. Human Vaccines and Immunotherapeutics, 2014, 10, 1334-1336.	3.3	13
77	Pneumococcal disease seasonality: incidence, severity and the role of influenza activity. European Respiratory Journal, 2014, 43, 833-841.	6.7	33
78	El Ni $\tilde{A}\pm$ o Southern Oscillation and Leptospirosis Outbreaks in New Caledonia. PLoS Neglected Tropical Diseases, 2014, 8, e2798.	3.0	52
79	Forecasting Temporal Dynamics of Cutaneous Leishmaniasis in Northeast Brazil. PLoS Neglected Tropical Diseases, 2014, 8, e3283.	3.0	20
80	Seasonal Drivers of Pneumococcal Disease Incidence: Impact of Bacterial Carriage and Viral Activity. Clinical Infectious Diseases, 2014, 58, 188-194.	5 . 8	69
81	Increasing similarity in the dynamics of influenza in two adjacent subtropical Chinese cities following the relaxation of border restrictions. Journal of General Virology, 2014, 95, 531-538.	2.9	13
82	Impact of 13-Valent Pneumococcal Conjugate Vaccination in Invasive Pneumococcal Disease Incidence and Mortality. Clinical Infectious Diseases, 2014, 59, 1066-1073.	5.8	266
83	Influence of Pneumococcal Vaccines and Respiratory Syncytial Virus on Alveolar Pneumonia, Israel. Emerging Infectious Diseases, 2013, 19, 1084-1091.	4.3	34
84	Streptococcus pneumoniae Capsular Serotype Invasiveness Correlates with the Degree of Factor H Binding and Opsonization with C3b/iC3b. Infection and Immunity, 2013, 81, 354-363.	2.2	83
85	Identifying the Interaction Between Influenza and Pneumococcal Pneumonia Using Incidence Data. Science Translational Medicine, 2013, 5, 191ra84.	12.4	123
86	Using Pneumococcal Carriage Data to Monitor Postvaccination Changes in Invasive Disease. American Journal of Epidemiology, 2013, 178, 1488-1495.	3.4	60
87	Serotype-Specific Effect of Influenza on Adult Invasive Pneumococcal Pneumonia. Journal of Infectious Diseases, 2013, 208, 1274-1280.	4.0	28
88	Surface Charge of Streptococcus pneumoniae Predicts Serotype Distribution. Infection and Immunity, 2013, 81, 4519-4524.	2.2	54
89	Impact of the 2009 Influenza Pandemic on Pneumococcal Pneumonia Hospitalizations in the United States. Journal of Infectious Diseases, 2012, 205, 458-465.	4.0	122
90	Estimating Rates of Carriage Acquisition and Clearance and Competitive Ability for Pneumococcal Serotypes in Kenya With a Markov Transition Model. Epidemiology, 2012, 23, 510-519.	2.7	79

#	Article	IF	CITATIONS
91	Serotype replacement after pneumococcal vaccination $\hat{a}\in$ "Authors' reply. Lancet, The, 2012, 379, 1388-1389.	13.7	8
92	Influenza Epidemics in Iceland Over 9 Decades: Changes in Timing and Synchrony With the United States and Europe. American Journal of Epidemiology, 2012, 176, 649-655.	3.4	29
93	Broad antibody and T cell reactivity induced by a pneumococcal whole-cell vaccine. Vaccine, 2012, 30, 4316-4322.	3.8	46
94	Serotype replacement in disease after pneumococcal vaccination. Lancet, The, 2011, 378, 1962-1973.	13.7	833
95	Prediction of Serotypes Causing Invasive Pneumococcal Disease in Unvaccinated and Vaccinated Populations. Epidemiology, 2011, 22, 199-207.	2.7	35
96	Association of Serotype with Risk of Death Due to Pneumococcal Pneumonia: A Metaâ€Analysis. Clinical Infectious Diseases, 2010, 51, 692-699.	5.8	297
97	Impaired Innate and Adaptive Immunity to <i>Streptococcus pneumoniae</i> and Its Effect on Colonization in an Infant Mouse Model. Infection and Immunity, 2009, 77, 1613-1622.	2.2	63
98	Pneumococcal Capsular Polysaccharide Structure Predicts Serotype Prevalence. PLoS Pathogens, 2009, 5, e1000476.	4.7	264
99	Epidemiologic Evidence for Serotypeâ€Specific Acquired Immunity to Pneumococcal Carriage. Journal of Infectious Diseases, 2008, 197, 1511-1518.	4.0	117
100	Expression of the Helicobacter pylori adhesin SabA is controlled via phase variation and the ArsRS signal transduction system. Microbiology (United Kingdom), 2008, 154, 2231-2240.	1.8	72
101	Real-time monitoring of the rollout of pneumococcal conjugate vaccines in rural India using a digital tracking platform. Gates Open Research, 0, 5, 16.	1.1	4