Zhenlan Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/77450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass. Nature Communications, 2022, 13, 2068.	12.8	37
2	Unravelling phase and morphology evolution of NaYbF ₄ upconversion nanoparticles <i>via</i> modulating reaction parameters. Inorganic Chemistry Frontiers, 2022, 9, 4081-4090.	6.0	4
3	Synthesis and biomedical application of nanocomposites integrating metal-organic frameworks with upconversion nanoparticles. Coordination Chemistry Reviews, 2022, 468, 214641.	18.8	13
4	Coordination networks constructed from a flexible ligand: single-crystal-to-single-crystal transformations and thermoresponsive and electrochemical performances. CrystEngComm, 2022, 24, 5364-5371.	2.6	1
5	The effect of surface-capping oleic acid on the optical properties of lanthanide-doped nanocrystals. Nanoscale, 2021, 13, 12494-12504.	5.6	8
6	Single-Metallic Thermoresponsive Coordination Network as a Dual-Parametric Luminescent Thermometer. ACS Applied Materials & Interfaces, 2021, 13, 35905-35913.	8.0	5
7	GdF3 hollow spheres: self-assembly and multiple emission spanning the UV to NIR regions under 980 nm excitation. Inorganic Chemistry Frontiers, 2020, 7, 1540-1545.	6.0	6
8	Multicolour barcoding in one MOF crystal through rational postsynthetic transmetalation. Journal of Materials Chemistry C, 2020, 8, 3176-3182.	5.5	6
9	Singleâ€Irradiation Simultaneous Dualâ€Modal Bioimaging Using Nanostructure Scintillators as Single Contrast Agent. Advanced Healthcare Materials, 2019, 8, e1801324.	7.6	11
10	Intentional anion incorporation to rationally modulate the size, shape and optical properties of lanthanide oxide nanocrystals. Nanoscale, 2019, 11, 5633-5639.	5.6	1
11	Thinning shell thickness of CuInS2@ZnS quantum dots to boost detection sensitivity. Analytica Chimica Acta, 2019, 1047, 124-130.	5.4	12
12	Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coordination Chemistry Reviews, 2018, 373, 199-232.	18.8	113
13	Alleviating the emitter concentration effect on upconversion nanoparticles via an inert shell. Journal of Materials Chemistry C, 2017, 5, 1537-1543.	5.5	31
14	A Series of Lanthanide-Based Metal–Organic Frameworks: Synthesis, Structures, and Multicolor Tuning of Single Component. Inorganic Chemistry, 2017, 56, 2345-2353.	4.0	47
15	The Catalytic Properties of a Copper-Based Nanoscale Coordination Polymer Fabricated by a Solvent-Etching Top-Down Route. European Journal of Inorganic Chemistry, 2017, 2017, 4803-4807.	2.0	4
16	Two Silver Coordination Network Compounds with Colorful Photoluminescence. Inorganic Chemistry, 2016, 55, 7954-7961.	4.0	20
17	Defectâ€Engineered Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 7234-7254.	13.8	923
18	Structural Complexity in Metal–Organic Frameworks: Simultaneous Modification of Open Metal Sites and Hierarchical Porosity by Systematic Doping with Defective Linkers. Journal of the American Chemical Society, 2014, 136, 9627-9636.	13.7	240

#	Article	IF	CITATIONS
19	Solvothermal synthesis of two new coordination polymers: in situ heterocycle conversion and N-alkylation, network topologies and luminescence properties. CrystEngComm, 2012, 14, 4794.	2.6	9
20	Three Two-Folded Interpenetrating 3D Metal–Organic Frameworks Consisting of Dinuclear Metal Units: Syntheses, Structures, and Magnetic Properties. Crystal Growth and Design, 2011, 11, 4517-4524.	3.0	42