
Lingpeng Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7744693/publications.pdf Version: 2024-02-01

LINCRENC YAN

#	Article	IF	CITATIONS
1	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	8.2	349
2	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	8.2	157
3	Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs. Nanoscale, 2016, 8, 8618-8632.	5.6	129
4	Fully solution processed semi-transparent perovskite solar cells with spray-coated silver nanowires/ZnO composite top electrode. Solar Energy Materials and Solar Cells, 2018, 185, 399-405.	6.2	111
5	Silane-Capped ZnO Nanoparticles for Use as the Electron Transport Layer in Inverted Organic Solar Cells. ACS Nano, 2018, 12, 5518-5529.	14.6	101
6	Synthesis of N,S-Doped Carbon Quantum Dots for Use in Organic Solar Cells as the ZnO Modifier To Eliminate the Light-Soaking Effect. ACS Applied Materials & Interfaces, 2019, 11, 2243-2253.	8.0	94
7	Synthesis of carbon quantum dots by chemical vapor deposition approach for use in polymer solar cell as the electrode buffer layer. Carbon, 2016, 109, 598-607.	10.3	70
8	12.88% efficiency in doctor-blade coated organic solar cells through optimizing the surface morphology of a ZnO cathode buffer layer. Journal of Materials Chemistry A, 2019, 7, 212-220.	10.3	70
9	Efficiency above 12% for 1 cm ² Flexible Organic Solar Cells with Ag/Cu Grid Transparent Conducting Electrode. Advanced Science, 2019, 6, 1901490.	11.2	58
10	High Power Conversion Efficiency of 13.61% for 1 cm ² Flexible Polymer Solar Cells Based on Patternable and Massâ€Producible Gravureâ€Printed Silver Nanowire Electrodes. Advanced Functional Materials, 2021, 31, 2007276.	14.9	55
11	Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells. Optical Materials, 2018, 75, 166-173.	3.6	40
12	Low-Temperature Hydrothermal Synthesis of Green Luminescent Carbon Quantum Dots (CQD), and Optical Properties of Blends of the CQD with Poly(3-hexylthiophene). Journal of Electronic Materials, 2015, 44, 3436-3443.	2.2	30
13	Simultaneously Achieving Highly Efficient and Stable Polymer:Nonâ€Fullerene Solar Cells Enabled By Molecular Structure Optimization and Surface Passivation. Advanced Science, 2022, 9, e2104588.	11.2	28
14	External load-dependent degradation of P3HT:PC ₆₁ BM solar cells: behavior, mechanism, and method of suppression. Journal of Materials Chemistry A, 2017, 5, 10010-10020.	10.3	26
15	Effect of the π-conjugation length on the properties and photovoltaic performance of A–π–D–π–A type oligothiophenes with a 4,8-bis(thienyl)benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene core. Beilstein Journal of Organic Chemistry, 2016, 12, 1788-1797.	2.2	23
16	Simultaneous performance and stability improvement of polymer:fullerene solar cells by doping with piperazine. Journal of Materials Chemistry A, 2019, 7, 7099-7108.	10.3	20
17	Zinc Oxide Coated Carbon Dot Nanoparticles as Electron Transport Layer for Inverted Polymer Solar Cells. ACS Applied Energy Materials, 2020, 3, 11388-11397.	5.1	16
18	Simultaneous Performance and Stability Improvement of Ternary Polymer Solar Cells Enabled by Modulating the Molecular Packing of Acceptors. Solar Rrl, 2020, 4, 2000374.	5.8	15

LINGPENG YAN

#	Article	IF	CITATIONS
19	The Role of the Hydrogen Bond between Piperazine and Fullerene Molecules in Stabilizing Polymer:Fullerene Solar Cell Performance. ACS Applied Materials & Interfaces, 2020, 12, 15472-15481.	8.0	15
20	Revealing the Interfacial Photoreduction of MoO ₃ with P3HT from the Molecular Weight-Dependent "Burn-In―Degradation of P3HT:PC ₆₁ BM Solar Cells. ACS Applied Energy Materials, 2020, 3, 9714-9723.	5.1	13
21	Degradation of Polymer Solar Cells: Knowledge Learned from the Polymer:Fullerene Solar Cells. Energy Technology, 2021, 9, 2000920.	3.8	10
22	P3HT/Dodecylamine Functioned Carbon Microspheres Composite Films for Polymer Solar Cells. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 549-556.	2.1	9
23	The interfacial degradation mechanism of polymer:fullerene bis-adduct solar cells and their stability improvement. Materials Advances, 2020, 1, 1307-1317.	5.4	9
24	Organic Amines as Targeting Stabilizer at the Polymer/Fullerene Interface for Polymer:PC 61 BM Solar Cells. Energy Technology, 2020, 8, 2000266.	3.8	8
25	Synthesis and optical properties of composite films from P3HT and sandwich-like Ag–C–Ag nanoparticles. RSC Advances, 2015, 5, 79860-79867.	3.6	7
26	Cyclopentadithiophene cored A-ï€-D-ï€-A non-fullerene electron acceptor in ternary polymer solar cells to extend the light absorption up to 900†nm. Organic Electronics, 2020, 77, 105530.	2.6	5
27	Spin-coated P3HT:Aminated carbon microsphere composite films for polymer solar cells. Journal of Materials Research, 2014, 29, 492-500.	2.6	3
28	Hybrid Hole Extraction Layer Enabled High Efficiency in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 55342-55348.	8.0	3
29	Optical properties of the composite film from P3HT and hydrothermally synthesized porous carbon nanospheres. Journal of Materials Research, 2015, 30, 1599-1610.	2.6	1
30	Synthesis, molecular structure and photovoltaic performance for polythiophenes with β-carboxylate side chains. Journal of Polymer Research, 2021, 28, 1.	2.4	1
31	Deposition of Ag nanoparticles on carbon microspheres surface: Evaluation of structures, electrochemical and optical properties. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 743-749.	1.0	0