
Aimen K Farraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7744362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The utility of alternative models in particulate matter air pollution toxicology. Current Research in Toxicology, 2022, 3, 100077.	2.7	5
2	Early-life persistent vitamin D deficiency-induced cardiovascular dysfunction in mice is mediated by transient receptor potential C channels. Journal of Steroid Biochemistry and Molecular Biology, 2021, 206, 105804.	2.5	1
3	Exposure to Intermittent Noise Exacerbates the Cardiovascular Response of Wistar–Kyoto Rats to Ozone Inhalation and Arrhythmogenic Challenge. Cardiovascular Toxicology, 2021, 21, 336-348.	2.7	3
4	Key Characteristics of Cardiovascular Toxicants. Environmental Health Perspectives, 2021, 129, 95001.	6.0	30
5	Peat smoke inhalation alters blood pressure, baroreflex sensitivity, and cardiac arrhythmia risk in rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 748-763.	2.3	8
6	A single exposure to eucalyptus smoke sensitizes rats to the postprandial cardiovascular effects of a high carbohydrate oral load. Inhalation Toxicology, 2020, 32, 342-353.	1.6	3
7	Early Proteome Shift and Serum Bioactivity Precede Diesel Exhaust-induced Impairment of Cardiovascular Recovery in Spontaneously Hypertensive Rats. Scientific Reports, 2019, 9, 6885.	3.3	5
8	Fetal growth outcomes following peri-implantation exposure of Long-Evans rats to noise and ozone differ by sex. Biology of Sex Differences, 2019, 10, 54.	4.1	7
9	Aspirin pre-treatment modulates ozone-induced fetal growth restriction and alterations in uterine blood flow in rats. Reproductive Toxicology, 2019, 83, 63-72.	2.9	8
10	Ozone Exposure During Implantation Increases Serum Bioactivity in HTR-8/SVneo Trophoblasts. Toxicological Sciences, 2019, 168, 535-550.	3.1	10
11	High-Throughput Video Processing of Heart Rate Responses in Multiple Wild-type Embryonic Zebrafish per Imaging Field. Scientific Reports, 2019, 9, 145.	3.3	27
12	Ambient Particulate Matter and Acrolein Co-Exposure Increases Myocardial Dyssynchrony in Mice via TRPA1. Toxicological Sciences, 2019, 167, 559-572.	3.1	19
13	TRPA1 mediates the cardiac effects of acrolein through parasympathetic dominance but also sympathetic modulation in mice. Toxicology and Applied Pharmacology, 2018, 347, 104-114.	2.8	10
14	Early-Life Persistent Vitamin D Deficiency Alters Cardiopulmonary Responses to Particulate Matter-Enhanced Atmospheric Smog in Adult Mice. Environmental Science & Technology, 2018, 52, 3054-3061.	10.0	8
15	Comparative Cardiopulmonary Effects of Particulate Matter- And Ozone-Enhanced Smog Atmospheres in Mice. Environmental Science & amp; Technology, 2018, 52, 3071-3080.	10.0	18
16	Zebrafish Locomotor Responses Reveal Irritant Effects of Fine Particulate Matter Extracts and a Role for TRPA1. Toxicological Sciences, 2018, 161, 290-299.	3.1	15
17	Pulmonary exposure to peat smoke extracts in rats decreases expiratory time and increases left heart end systolic volume. Inhalation Toxicology, 2018, 30, 439-447.	1.6	7
18	Acute peat smoke inhalation sensitizes rats to the postprandial cardiometabolic effects of a high fat oral load. Science of the Total Environment, 2018, 643, 378-391.	8.0	10

AIMEN K FARRAJ

#	Article	IF	CITATIONS
19	Acrolein Inhalation Alters Myocardial Synchrony and Performance at and Below Exposure Concentrations that Cause Ventilatory Responses. Cardiovascular Toxicology, 2017, 17, 97-108.	2.7	9
20	Diesel Exhaust Worsens Cardiac Conduction Instability in Dobutamine-Challenged Wistar–Kyoto and Spontaneously Hypertensive Rats. Cardiovascular Toxicology, 2017, 17, 120-129.	2.7	3
21	TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein. Toxicology and Applied Pharmacology, 2017, 324, 51-60.	2.8	35
22	Uterine Artery Flow and Offspring Growth in Long-Evans Rats following Maternal Exposure to Ozone during Implantation. Environmental Health Perspectives, 2017, 125, 127005.	6.0	18
23	Morning NO ₂ exposure sensitizes hypertensive rats to the cardiovascular effects of same day O ₃ exposure in the afternoon. Inhalation Toxicology, 2016, 28, 170-179.	1.6	8
24	The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction. , 2016, 165, 63-78.		13
25	The effects of B0, B20, and B100 soy biodiesel exhaust on aconitine-induced cardiac arrhythmia in spontaneously hypertensive rats. Inhalation Toxicology, 2015, 27, 557-563.	1.6	13
26	Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats. Inhalation Toxicology, 2015, 27, 54-63.	1.6	41
27	Cardiac effects of seasonal ambient particulate matter and ozone co-exposure in rats. Particle and Fibre Toxicology, 2015, 12, 12.	6.2	39
28	Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia and pulmonary inflammation in heart failure-prone rats. Inhalation Toxicology, 2015, 27, 100-112.	1.6	34
29	Role of Autonomic Reflex Arcs in Cardiovascular Responses to Air Pollution Exposure. Cardiovascular Toxicology, 2015, 15, 69-78.	2.7	101
30	Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses. Particle and Fibre Toxicology, 2014, 11, 54.	6.2	34
31	A Single Exposure to Acrolein Desensitizes Baroreflex Responsiveness and Increases Cardiac Arrhythmias in Normotensive and Hypertensive Rats. Cardiovascular Toxicology, 2014, 14, 52-63.	2.7	29
32	Hypoxia Stress Test Reveals Exaggerated Cardiovascular Effects in Hypertensive Rats After Exposure to the Air Pollutant Acrolein. Toxicological Sciences, 2013, 132, 467-477.	3.1	26
33	An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Dobutamine Challenges in Heart Failure–Prone Rats. Toxicological Sciences, 2013, 135, 425-436.	3.1	28
34	Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure–Prone Rats. Toxicological Sciences, 2013, 131, 583-595.	3.1	40
35	Overt and Latent Cardiac Effects of Ozone Inhalation in Rats: Evidence for Autonomic Modulation and Increased Myocardial Vulnerability. Environmental Health Perspectives, 2012, 120, 348-354.	6.0	39
36	Whole and Particle-Free Diesel Exhausts Differentially Affect Cardiac Electrophysiology, Blood Pressure, and Autonomic Balance in Heart Failure–Prone Rats. Toxicological Sciences, 2012, 128, 490-499.	3.1	46

AIMEN K FARRAJ

#	Article	IF	CITATIONS
37	Dobutamine "Stress―Test and Latent Cardiac Susceptibility to Inhaled Diesel Exhaust in Normal and Hypertensive Rats. Environmental Health Perspectives, 2012, 120, 1088-1093.	6.0	21
38	Divergent Electrocardiographic Responses to Whole and Particle-Free Diesel Exhaust Inhalation in Spontaneously Hypertensive Rats. Toxicological Sciences, 2012, 125, 558-568.	3.1	34
39	Merits of Non-Invasive Rat Models of Left Ventricular Heart Failure. Cardiovascular Toxicology, 2011, 11, 91-112.	2.7	35
40	The Utility of the Small Rodent Electrocardiogram in Toxicology. Toxicological Sciences, 2011, 121, 11-30.	3.1	89
41	Dietary Salt Exacerbates Isoproterenol-Induced Cardiomyopathy in Rats. Toxicologic Pathology, 2011, 39, 925-937.	1.8	6
42	ST Depression, Arrhythmia, Vagal Dominance, and Reduced Cardiac Micro-RNA in Particulate-Exposed Rats. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 185-196.	2.9	73
43	TRPA1 and Sympathetic Activation Contribute to Increased Risk of Triggered Cardiac Arrhythmias in Hypertensive Rats Exposed to Diesel Exhaust. Environmental Health Perspectives, 2011, 119, 951-957.	6.0	123
44	Increased lung resistance after diesel particulate and ozone co-exposure not associated with enhanced lung inflammation in allergic mice. Inhalation Toxicology, 2010, 22, 33-41.	1.6	12
45	Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy. Inhalation Toxicology, 2010, 22, 355-368.	1.6	35
46	Increased Nonconducted P-Wave Arrhythmias after a Single Oil Fly Ash Inhalation Exposure in Hypertensive Rats. Environmental Health Perspectives, 2009, 117, 709-715.	6.0	34
47	Continuous Electrocardiogram Reveals Differences in the Short-Term Cardiotoxic Response of Wistar-Kyoto and Spontaneously Hypertensive Rats to Doxorubicin. Toxicological Sciences, 2009, 110, 224-234.	3.1	39
48	A Single Exposure to Particulate or Gaseous Air Pollution Increases the Risk of Aconitine-Induced Cardiac Arrhythmia in Hypertensive Rats. Toxicological Sciences, 2009, 112, 532-542.	3.1	46
49	Increased Neurotrophin Production in aPenicillium chrysogenum-Induced Allergic Asthma Model in Mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 1020-1026.	2.3	9
50	Th2 Cytokines in Skin Draining Lymph Nodes and Serum IgE Do Not Predict Airway Hypersensitivity to Intranasal Isocyanate Exposure in Mice. Toxicological Sciences, 2007, 100, 99-108.	3.1	26
51	Inhibition of Pan Neurotrophin Receptor p75 Attenuates Diesel Particulate-Induced Enhancement of Allergic Airway Responses in C57/B16J Mice. Inhalation Toxicology, 2006, 18, 483-491.	1.6	11
52	Inconsistencies between Cytokine Profiles, Antibody Responses, and Respiratory Hyperresponsiveness following Dermal Exposure to Isocyanates. Toxicological Sciences, 2006, 94, 108-117.	3.1	47
53	Neurotrophin Mediation of Allergic Airways Responses to Inhaled Diesel Particles in Mice. Toxicological Sciences, 2006, 94, 183-192.	3.1	11