
Maria Luisa Botero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/774407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels. Carbon, 2016, 96, 459-473.	10.3	139
2	Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures. Fuel, 2012, 94, 342-347.	6.4	105
3	Internal structure of soot particles in a diffusion flame. Carbon, 2019, 141, 635-642.	10.3	94
4	PAH structure analysis of soot in a non-premixed flame using high-resolution transmission electron microscopy and optical band gap analysis. Combustion and Flame, 2016, 164, 250-258.	5.2	69
5	Sooting characteristics of polyoxymethylene dimethyl ether blends with diesel in a diffusion flame. Fuel, 2018, 224, 499-506.	6.4	62
6	Sooting tendency of paraffin components of diesel and gasoline in diffusion flames. Fuel, 2014, 126, 8-15.	6.4	60
7	Sooting tendency and particle size distributions of n-heptane/toluene mixtures burned in a wick-fed diffusion flame. Fuel, 2016, 169, 111-119.	6.4	55
8	An improved methodology for determining threshold sooting indices from smoke point lamps. Fuel, 2013, 111, 120-130.	6.4	52
9	Sooting tendency of surrogates for the aromatic fractions of diesel and gasoline in a wick-fed diffusion flame. Fuel, 2015, 153, 31-39.	6.4	52
10	Polymorphism of nanocrystalline TiO ₂ prepared in a stagnation flame: formation of the TiO ₂ -II phase. Chemical Science, 2019, 10, 1342-1350.	7.4	40
11	Experimental and numerical study of the evolution of soot primary particles in a diffusion flame. Proceedings of the Combustion Institute, 2019, 37, 2047-2055.	3.9	39
12	On the thermophoretic sampling and TEM-based characterisation of soot particles in flames. Carbon, 2021, 171, 711-722.	10.3	31
13	A virtual laboratory to support chemical reaction engineering courses using real-life problems and industrial software. Education for Chemical Engineers, 2020, 33, 36-44.	4.8	27
14	The impact of cyclic fuels on the formation and structure of soot. Combustion and Flame, 2020, 219, 1-12.	5.2	25
15	Flexoelectricity and the Formation of Carbon Nanoparticles in Flames. Journal of Physical Chemistry C, 2018, 122, 22210-22215.	3.1	23
16	Co ₃ O ₄ and Fe _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Nanoparticles/Films Synthesized in a Vapor-Fed Flame Aerosol Reactor for Oxygen Evolution. ACS Applied Energy Materials, 2018, 1, 655-665.	5.1	20
17	Evolution of the soot particle size distribution along the centreline of an n-heptane/toluene co-flow diffusion flame. Combustion and Flame, 2019, 209, 256-266.	5.2	17
18	Detailed characterisation of TiO2 nano-aggregate morphology using TEM image analysis. Journal of Aerosol Science, 2019, 133, 96-112.	3.8	16

MARIA LUISA BOTERO

#	Article	IF	CITATIONS
19	Mechanical Properties of Soot Particles: The Impact of Crosslinked Polycyclic Aromatic Hydrocarbons. Combustion Science and Technology, 2021, 193, 643-663.	2.3	14
20	Cambridge weblabs: A process control system using industrial standard SIMATIC PCS 7. Education for Chemical Engineers, 2016, 16, 1-8.	4.8	12
21	Size spectra and source apportionment of fine particulates in tropical urban environment during southwest monsoon season. Environmental Pollution, 2019, 244, 477-485.	7.5	10
22	Pentanol/diesel fuel blends: Assessment of inhalation cancer risk and ozone formation potential from carbonyl emissions emitted by an automotive diesel engine. Fuel, 2022, 321, 124054.	6.4	6
23	An assessment on how different collection methods impact thermal properties, surface functional groups, nanostructure and morphology of diesel particulate matter. Combustion and Flame, 2021, 225, 74-85.	5.2	5
24	Experimental and numerical study of palm oil and castor oil biodiesel droplet evaporation. CTyF - Ciencia, Tecnologia Y Futuro, 2017, 6, 83-94.	0.5	0