
Jinha Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7743995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology, 2021, 70, 15-22.	6.6	186
2	Crop height monitoring with digital imagery from Unmanned Aerial System (UAS). Computers and Electronics in Agriculture, 2017, 141, 232-237.	7.7	132
3	Modeling acoustic diversity using soundscape recordings and LIDAR-derived metrics of vertical forest structure in a neotropical rainforest. Landscape Ecology, 2012, 27, 1513-1522.	4.2	89
4	Ensemble Multiple Kernel Active Learning For Classification of Multisource Remote Sensing Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 845-858.	4.9	70
5	Developing a machine learning based cotton yield estimation framework using multi-temporal UAS data. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 180-194.	11.1	69
6	Comparison of Vegetation Indices Derived from UAV Data for Differentiation of Tillage Effects in Agriculture. Remote Sensing, 2019, 11, 1548.	4.0	64
7	Measurement and Calibration of Plant-Height from Fixed-Wing UAV Images. Sensors, 2018, 18, 4092.	3.8	58
8	Combined vegetation volume and "greenness―affect urban air temperature. Applied Geography, 2016, 71, 106-114.	3.7	52
9	Prediction of Maize Grain Yield before Maturity Using Improved Temporal Height Estimates of Unmanned Aerial Systems. The Plant Phenome Journal, 2019, 2, 1-15.	2.0	52
10	Automated Open Cotton Boll Detection for Yield Estimation Using Unmanned Aircraft Vehicle (UAV) Data. Remote Sensing, 2018, 10, 1895.	4.0	51
11	Temporal Estimates of Crop Growth in Sorghum and Maize Breeding Enabled by Unmanned Aerial Systems. The Plant Phenome Journal, 2018, 1, 1-10.	2.0	51
12	Plant Counting of Cotton from UAS Imagery Using Deep Learning-Based Object Detection Framework. Remote Sensing, 2020, 12, 2981.	4.0	48
13	Validation of agronomic UAV and field measurements for tomato varieties. Computers and Electronics in Agriculture, 2019, 158, 278-283.	7.7	44
14	A Comparative Study of RGB and Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal UAS Data. Remote Sensing, 2019, 11, 2757.	4.0	44
15	A Framework for Land Cover Classification Using Discrete Return LiDAR Data: Adopting Pseudo-Waveform and Hierarchical Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 491-502.	4.9	40
16	Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV). Computers and Electronics in Agriculture, 2020, 176, 105665.	7.7	39
17	Soundscapes reveal disturbance impacts: biophonic response to wildfire in the Sonoran Desert Sky Islands. Landscape Ecology, 2018, 33, 1399-1415.	4.2	35
18	Unmanned aerial system assisted framework for the selection of high yielding cotton genotypes. Computers and Electronics in Agriculture, 2018, 152, 74-81.	7.7	34

Jinha Jung

#	Article	IF	CITATIONS
19	A novel framework to detect conventional tillage and no-tillage cropping system effect on cotton growth and development using multi-temporal UAS data. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152, 49-64.	11.1	34
20	Unoccupied aerial system enabled functional modeling of maize height reveals dynamic expression of loci. Plant Direct, 2020, 4, e00223.	1.9	28
21	Comparison of Canopy Shape and Vegetation Indices of Citrus Trees Derived from UAV Multispectral Images for Characterization of Citrus Greening Disease. Remote Sensing, 2020, 12, 4122.	4.0	22
22	Unmanned Aircraft System- (UAS-) Based High-Throughput Phenotyping (HTP) for Tomato Yield Estimation. Journal of Sensors, 2021, 2021, 1-14.	1.1	21
23	Extraction of Features From LIDAR Waveform Data for Characterizing Forest Structure. IEEE Geoscience and Remote Sensing Letters, 2012, 9, 492-496.	3.1	17
24	Assessing the Effect of Drought on Winter Wheat Growth Using Unmanned Aerial System (UAS)-Based Phenotyping. Remote Sensing, 2021, 13, 1144.	4.0	16
25	Developing Growthâ€Associated Molecular Markers Via Highâ€Throughput Phenotyping in Spinach. Plant Genome, 2019, 12, 190027.	2.8	15
26	Optimization of UASâ€based highâ€throughput phenotyping to estimate plant health and grain yield in sorghum. The Plant Phenome Journal, 2020, 3, e20010.	2.0	15
27	Unmanned aerial system based tomato yield estimation using machine learning. , 2019, , .		15
28	UAV remote sensing based estimation of green cover during turfgrass establishment. Computers and Electronics in Agriculture, 2022, 194, 106721.	7.7	13
29	A ground based platform for high throughput phenotyping. Computers and Electronics in Agriculture, 2017, 141, 286-291.	7.7	11
30	Assessing land leveling needs and performance with unmanned aerial system. Journal of Applied Remote Sensing, 2018, 12, 1.	1.3	11
31	High-Resolution Canopy Height Model Generation and Validation Using USGS 3DEP LiDAR Data in Indiana, USA. Remote Sensing, 2022, 14, 935.	4.0	11
32	Effects of highways on bird distribution and soundscape diversity around Aldo Leopold's shack in Baraboo, Wisconsin, USA. Landscape and Urban Planning, 2019, 192, 103666.	7.5	10
33	Automated Coregistration of Multisensor Orthophotos Generated from Unmanned Aerial Vehicle Platforms. Journal of Sensors, 2019, 2019, 1-10.	1.1	8
34	Measurement of Cotton Canopy Temperature Using Radiometric Thermal Sensor Mounted on the Unmanned Aerial Vehicle (UAV). Journal of Sensors, 2020, 2020, 1-7.	1.1	8
35	3D Characterization of Sorghum Panicles Using a 3D Point Cloud Derived from UAV Imagery. Remote Sensing, 2021, 13, 282.	4.0	8
36	A Two-Stage Approach for Decomposition of ICESat Waveforms. , 2008, , .		7

Jinha Jung

#	Article	IF	CITATIONS
37	Estimation of forest stand diameter class using airborne lidar and field data. Remote Sensing Letters, 2015, 6, 419-428.	1.4	7
38	Tar Spot Disease Quantification Using Unmanned Aircraft Systems (UAS) Data. Remote Sensing, 2021, 13, 2567.	4.0	7
39	Mapping Open Space in an Old-Growth, Secondary-Growth, and Selectively-Logged Tropical Rainforest Using Discrete Return LIDAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 2453-2461.	4.9	5
40	Cotton growth modeling using unmanned aerial vehicle vegetation indices. , 2017, , .		4
41	Estimation of plant health in a sorghum field infected with anthracnose using a fixed-wing unmanned aerial system. Journal of Crop Improvement, 2018, 32, 861-877.	1.7	4
42	Cost-effective Framework for Rapid Underwater Mapping with Digital Camera and Color Correction Method. KSCE Journal of Civil Engineering, 2019, 23, 1776-1785.	1.9	4
43	Calibrated plant height estimates with structure from motion from fixed-wing UAV images. , 2018, , .		4
44	Mapping Vegetation Volume in Urban Environments by Fusing LiDAR and Multispectral Data. Korean Journal of Remote Sensing, 2012, 28, 661-670.	0.4	4
45	Sorghum panicle extraction from unmanned aerial system data. , 2017, , .		3
46	UAS based Tomato Yellow Leaf Curl Virus (TYLCV) disease detection system. , 2019, , .		3
47	Application of unmanned aerial system for management of tomato cropping system. , 2019, , .		3
48	Performance Evaluation of Parallel Structure from Motion (SfM) Processing with Public Cloud Computing and an On-Premise Cluster System for UAS Images in Agriculture. ISPRS International Journal of Geo-Information, 2021, 10, 677.	2.9	2
49	LiDARHub: a free and open source software platform for web-based management, visualization and analysis of LiDAR data. Geosciences Journal, 2015, 19, 741-749.	1.2	1
50	Ensemble classifier based training data refinement technique for classification of remotely sensed optical images. , 2017, , .		1
51	UAV data reliability improvements based on multifunctional GCPs. , 2019, , .		1
52	Combining UAS and Sentinel-2 Data to Estimate Canopy Parameters of a Cotton Crop Using Machine Learning. , 2020, , .		1
53	Phenotyping of sorghum panicles using unmanned aerial system (UAS) data. , 2018, , .		0
54	Cotton row spacing and Unmanned Aerial Vehicle (UAV) sensors. Agronomy Journal, 0, , .	1.8	0

#	Article	IF	CITATIONS
55	Estimation of Visual Rating of TAR Spot Disease of Corn Using Unmanned Aerial Systems (UAS) Data and Machine Learning Techniques. , 2020, , .		0