List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7743973/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Longitudinal1H Relaxation Optimization in TROSY NMR Spectroscopy. Journal of the American Chemical Society, 2002, 124, 12898-12902.                                                      | 13.7 | 166       |
| 2  | An enzymatic molten globule: Efficient coupling of folding and catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12860-12864.       | 7.1  | 128       |
| 3  | Limits on Variations in Protein Backbone Dynamics from Precise Measurements of Scalar Couplings.<br>Journal of the American Chemical Society, 2007, 129, 9377-9385.                      | 13.7 | 127       |
| 4  | The nuclear Overhauser effect from a quantitative perspective. Progress in Nuclear Magnetic Resonance Spectroscopy, 2014, 78, 1-46.                                                      | 7.5  | 115       |
| 5  | Structure and dynamics of a molten globular enzyme. Nature Structural and Molecular Biology, 2007, 14, 1202-1206.                                                                        | 8.2  | 102       |
| 6  | NMR Determination of Amide Nâ^'H Equilibrium Bond Length from Concerted Dipolar Coupling<br>Measurements. Journal of the American Chemical Society, 2008, 130, 16518-16520.              | 13.7 | 98        |
| 7  | Targeting tumor-derived NLRP3 reduces melanoma progression by limiting MDSCs expansion.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1  | 95        |
| 8  | Spatial elucidation of motion in proteins by ensemble-based structure calculation using exact NOEs.<br>Nature Structural and Molecular Biology, 2012, 19, 1053-1057.                     | 8.2  | 92        |
| 9  | Exact Distances and Internal Dynamics of Perdeuterated Ubiquitin from NOE Buildups. Journal of the<br>American Chemical Society, 2009, 131, 17215-17225.                                 | 13.7 | 91        |
| 10 | Simultaneous NMR Study of Protein Structure and Dynamics Using Conservative Mutagenesis. Journal of Physical Chemistry B, 2008, 112, 6045-6056.                                          | 2.6  | 87        |
| 11 | Relaxation Matrix Analysis of Spin Diffusion for the NMR Structure Calculation with eNOEs. Journal of Chemical Theory and Computation, 2012, 8, 3483-3492.                               | 5.3  | 47        |
| 12 | Solution NMR Studies of Recombinant Aβ(1–42): From the Presence of a Micellar Entity to Residual<br>βâ€5heet Structure in the Soluble Species. ChemBioChem, 2015, 16, 659-669.           | 2.6  | 42        |
| 13 | Correlated Dynamics between Protein HN and HC Bonds Observed by NMR Cross Relaxation. Journal of the American Chemical Society, 2009, 131, 3668-3678.                                    | 13.7 | 39        |
| 14 | The Exact NOE as an Alternative in Ensemble Structure Determination. Biophysical Journal, 2016, 110, 113-126.                                                                            | 0.5  | 39        |
| 15 | A transient helix in the disordered region of dynein light intermediate chain links the motor to structurally diverse adaptors for cargo transport. PLoS Biology, 2019, 17, e3000100.    | 5.6  | 39        |
| 16 | Recognition of non-CpG repeats in Alu and ribosomal RNAs by the Z-RNA binding domain of ADAR1 induces A-Z junctions. Nature Communications, 2021, 12, 793.                               | 12.8 | 39        |
| 17 | Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins. Science Advances, 2018, 4, eaau4130.                                             | 10.3 | 38        |
| 18 | Detection of C′,Cα correlations in proteins using a new time- and sensitivity-optimal experiment. Journal of Biomolecular NMR, 2005, 31, 273-278.                                        | 2.8  | 33        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Quantitative determination of NOE rates in perdeuterated and protonated proteins: Practical and theoretical aspects. Journal of Magnetic Resonance, 2010, 204, 290-302.                                                                   | 2.1  | 32        |
| 20 | eNORA2 Exact NOE Analysis Program. Journal of Chemical Theory and Computation, 2017, 13, 4336-4346.                                                                                                                                       | 5.3  | 32        |
| 21 | Towards a true protein movie: A perspective on the potential impact of the ensemble-based structure determination using exact NOEs. Journal of Magnetic Resonance, 2014, 241, 53-59.                                                      | 2.1  | 31        |
| 22 | Integrating NMR and simulations reveals motions in the UUCG tetraloop. Nucleic Acids Research, 2020, 48, 5839-5848.                                                                                                                       | 14.5 | 31        |
| 23 | A Structural Ensemble for the Enzyme Cyclophilin Reveals an Orchestrated Mode of Action at Atomic Resolution. Angewandte Chemie - International Edition, 2015, 54, 11657-11661.                                                           | 13.8 | 30        |
| 24 | Microbiota-derived butyrate is an endogenous HIF prolyl hydroxylase inhibitor. Gut Microbes, 2021, 13,<br>1938380.                                                                                                                        | 9.8  | 30        |
| 25 | The Inherent Dynamics and Interaction Sites of the SARS-CoV-2 Nucleocapsid N-Terminal Region.<br>Journal of Molecular Biology, 2021, 433, 167108.                                                                                         | 4.2  | 30        |
| 26 | Multiple-state ensemble structure determination from eNOE spectroscopy. Molecular Physics, 2013, 111, 437-454.                                                                                                                            | 1.7  | 28        |
| 27 | Protein backbone motions viewed by intraresidue and sequential HN–Hα residual dipolar couplings.<br>Journal of Biomolecular NMR, 2008, 41, 17-28.                                                                                         | 2.8  | 27        |
| 28 | The Exact Nuclear Overhauser Enhancement: Recent Advances. Molecules, 2017, 22, 1176.                                                                                                                                                     | 3.8  | 26        |
| 29 | Simultaneous 1H- or 2H-, 15N- and multiple-band-selective 13C-decoupling during acquisition in 13C-detected experiments with proteins and oligonucleotides. Journal of Biomolecular NMR, 2005, 31, 1-9.                                   | 2.8  | 24        |
| 30 | Measurements of Side-Chain13Câ~'13C Residual Dipolar Couplings in Uniformly Deuterated Proteins.<br>Journal of the American Chemical Society, 2004, 126, 2414-2420.                                                                       | 13.7 | 23        |
| 31 | The Structure of Mouse Cytomegalovirus m04 Protein Obtained from Sparse NMR Data Reveals a<br>Conserved Fold of the m02-m06 Viral Immune Modulator Family. Structure, 2014, 22, 1263-1273.                                                | 3.3  | 23        |
| 32 | Extending the eNOE data set of large proteins by evaluation of NOEs with unresolved diagonals.<br>Journal of Biomolecular NMR, 2015, 62, 63-69.                                                                                           | 2.8  | 23        |
| 33 | High-resolution small RNA structures from exact nuclear Overhauser enhancement measurements without additional restraints. Communications Biology, 2018, 1, 61.                                                                           | 4.4  | 23        |
| 34 | Spin-State Selective Carbon-Detected HNCO with TROSY Optimization in All Dimensions and Double<br>Echoâ^'Antiecho Sensitivity Enhancement in Both Indirect Dimensions. Journal of the American<br>Chemical Society, 2007, 129, 5484-5491. | 13.7 | 21        |
| 35 | Protein Allostery at Atomic Resolution. Angewandte Chemie - International Edition, 2020, 59, 22132-22139.                                                                                                                                 | 13.8 | 21        |
| 36 | Deuteration of nonexchangeable protons on proteins affects their thermal stability, side•hain<br>dynamics, and hydrophobicity. Protein Science, 2020, 29, 1641-1654.                                                                      | 7.6  | 21        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Comprehensive description of NMR cross-correlated relaxation under anisotropic molecular<br>tumbling and correlated local dynamics on all time scales. Journal of Chemical Physics, 2010, 133,<br>014501.          | 3.0  | 20        |
| 38 | The Dynamic Basis for Signal Propagation in Human Pin1-WW. Structure, 2016, 24, 1464-1475.                                                                                                                         | 3.3  | 20        |
| 39 | Exact distance measurements for structure and dynamics in solid proteins by fast-magic-angle-spinning NMR. Chemical Communications, 2019, 55, 7899-7902.                                                           | 4.1  | 20        |
| 40 | Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics. Journal of Structural Biology, 2015, 191, 306-317.                                          | 2.8  | 19        |
| 41 | Direct Investigation of Slow Correlated Dynamics in Proteins via Dipolar Interactions. Journal of the American Chemical Society, 2016, 138, 8412-8421.                                                             | 13.7 | 19        |
| 42 | The experimental accuracy of the uni-directional exact NOE. Journal of Magnetic Resonance, 2015, 259, 32-46.                                                                                                       | 2.1  | 17        |
| 43 | Microbialâ€derived indoles inhibit neutrophil myeloperoxidase to diminish bystander tissue damage.<br>FASEB Journal, 2021, 35, e21552.                                                                             | 0.5  | 17        |
| 44 | Temperature Dependence of1HN–1HNDistances in Ubiquitin As Studied by Exact Measurements of NOEs.<br>Journal of Physical Chemistry B, 2011, 115, 7648-7660.                                                         | 2.6  | 16        |
| 45 | Stereospecific assignments in proteins using exact NOEs. Journal of Biomolecular NMR, 2013, 57, 211-218.                                                                                                           | 2.8  | 16        |
| 46 | Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA.<br>ChemBioChem, 2018, 19, 1695-1701.                                                                               | 2.6  | 15        |
| 47 | TROSY experiment for refinement of backbone psi and phi by simultaneous measurements of cross-correlated relaxation rates and 3,4J(H alpha HN) coupling constants. Journal of Biomolecular NMR, 2002, 24, 291-300. | 2.8  | 13        |
| 48 | Enzyme Selectivity Fineâ€Tuned through Dynamic Control of a Loop. Angewandte Chemie - International<br>Edition, 2016, 55, 3096-3100.                                                                               | 13.8 | 13        |
| 49 | Reconstruction of Coupled Intra- and Interdomain Protein Motion from Nuclear and Electron<br>Magnetic Resonance. Journal of the American Chemical Society, 2021, 143, 16055-16067.                                 | 13.7 | 13        |
| 50 | Compiled data set of exact NOE distance limits, residual dipolar couplings and scalar couplings for the protein GB3. Data in Brief, 2015, 5, 99-106.                                                               | 1.0  | 11        |
| 51 | Protein Motional Details Revealed by Complementary Structural Biology Techniques. Structure, 2020, 28, 1024-1034.e3.                                                                                               | 3.3  | 11        |
| 52 | The Disordered Spindly C-terminus Interacts with RZZ Subunits ROD-1 and ZWL-1 in the Kinetochore through the Same Sites in C. Elegans. Journal of Molecular Biology, 2021, 433, 166812.                            | 4.2  | 11        |
| 53 | Observation of Individual Transitions in Magnetically Equivalent Spin Systems. Journal of the<br>American Chemical Society, 2003, 125, 9566-9567.                                                                  | 13.7 | 10        |
| 54 | Discrete Three-dimensional Representation of Macromolecular Motion from eNOE-based Ensemble<br>Calculation. Chimia, 2012, 66, 787.                                                                                 | 0.6  | 10        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Side-chain H and C resonance assignment in protonated/partially deuterated proteins using an improved 3D13C-detected HCC–TOCSY. Journal of Magnetic Resonance, 2005, 174, 200-208.                                                                          | 2.1 | 9         |
| 56 | Side chain: backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation.<br>Journal of Biomolecular NMR, 2010, 46, 135-147.                                                                                                      | 2.8 | 9         |
| 57 | Cross-correlated relaxation rates between protein backbone H–X dipolar interactions. Journal of<br>Biomolecular NMR, 2017, 67, 211-232.                                                                                                                     | 2.8 | 9         |
| 58 | NOEâ€Đerived Methyl Distances from a 360 kDa Proteasome Complex. Chemistry - A European Journal,<br>2018, 24, 2270-2276.                                                                                                                                    | 3.3 | 9         |
| 59 | How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cα–C′/HN–N<br>cross-correlated relaxation. Journal of Biomolecular NMR, 2011, 50, 315-329.                                                                                  | 2.8 | 8         |
| 60 | Distanceâ€independent Crossâ€correlated Relaxation and Isotropic Chemical Shift Modulation in Protein<br>Dynamics Studies. ChemPhysChem, 2019, 20, 178-196.                                                                                                 | 2.1 | 8         |
| 61 | Efficient Stereospecific Hβ2/3 NMR Assignment Strategy for Mid-Size Proteins. Magnetochemistry, 2018,<br>4, 25.                                                                                                                                             | 2.4 | 7         |
| 62 | Reducing the measurement time of exact NOEs by non-uniform sampling. Journal of Biomolecular NMR, 2020, 74, 717-739.                                                                                                                                        | 2.8 | 7         |
| 63 | Activity and Affinity of Pin1 Variants. Molecules, 2020, 25, 36.                                                                                                                                                                                            | 3.8 | 7         |
| 64 | The Sign of Nuclear Magnetic Resonance Chemical Shift Difference as a Determinant of the Origin of<br>Binding Selectivity: Elucidation of the Position Dependence of Phosphorylation in Ligands Binding to<br>Scribble PDZ1. Biochemistry, 2018, 57, 66-71. | 2.5 | 6         |
| 65 | Backbone and side-chain chemical shift assignments of full-length, apo, human Pin1, a phosphoprotein<br>regulator with interdomain allostery. Biomolecular NMR Assignments, 2019, 13, 85-89.                                                                | 0.8 | 6         |
| 66 | Intermolecular Detergent–Membrane Protein NOEs for the Characterization of the Dynamics of<br>Membrane Protein–Detergent Complexes. Journal of Physical Chemistry B, 2014, 118, 14288-14301.                                                                | 2.6 | 5         |
| 67 | Detection of Correlated Protein Backbone and Sideâ€Chain Angle Fluctuations. ChemBioChem, 2017, 18, 2016-2021.                                                                                                                                              | 2.6 | 5         |
| 68 | Correlated motions of C′–N and Cα–Cβ pairs in protonated and per-deuterated GB3. Journal of<br>Biomolecular NMR, 2018, 72, 39-54.                                                                                                                           | 2.8 | 5         |
| 69 | Interference between transverse cross-correlated relaxation and longitudinal relaxation affects<br>apparent J-coupling and transverse cross-correlated relaxation. Chemical Physics Letters, 2006, 423,<br>123-125.                                         | 2.6 | 4         |
| 70 | 13C-detected HN(CA)C and HMCMC experiments using a single methyl-reprotonated sample for unambiguous methyl resonance assignment. Journal of Biomolecular NMR, 2006, 36, 259-266.                                                                           | 2.8 | 4         |
| 71 | Solution NMR backbone assignment reveals interaction-free tumbling of human lineage-specific<br>Olduvai protein domains. Biomolecular NMR Assignments, 2019, 13, 339-343.                                                                                   | 0.8 | 4         |
| 72 | Measuring 1H–1H and 1H–13C RDCs in methyl groups: example of pulse sequences with numerically optimized coherence transfer schemes. Journal of Magnetic Resonance, 2005, 172, 36-47.                                                                        | 2.1 | 3         |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Full relaxation matrix analysis of apparent cross-correlated relaxation rates in four-spin systems.<br>Journal of Magnetic Resonance, 2013, 226, 52-63.                       | 2.1 | 3         |
| 74 | Solution NMR backbone assignments of the N-terminal Zα-linker-Zβ segment from Homo sapiens ADAR1p150. Biomolecular NMR Assignments, 2021, 15, 273-279.                        | 0.8 | 2         |
| 75 | Enzyme Selectivity Fineâ€Tuned through Dynamic Control of a Loop. Angewandte Chemie, 2016, 128, 3148-3152.                                                                    | 2.0 | 1         |
| 76 | Protein Allostery at Atomic Resolution. Angewandte Chemie, 2020, 132, 22316-22323.                                                                                            | 2.0 | 1         |
| 77 | Microbiotaâ€derived butyrate is an endogenous inhibitor of HIF prolylâ€hydroxylases. FASEB Journal, 2021,<br>35, .                                                            | 0.5 | 0         |
| 78 | On the use of residual dipolar couplings in multi-state structure calculation of two-domain proteins.<br>Magnetic Resonance Letters, 2022, 2, 61-68.                          | 1.3 | 0         |
| 79 | Solution NMR backbone assignments of disordered Olduvai protein domain CON1 employing<br>Hα-detected experiments. Biomolecular NMR Assignments, 2022, , 1.                    | 0.8 | 0         |
| 80 | Structural Investigation of a Putative Intrinsically Disordered Region Within Deleted in Colorectal<br>Carcinoma That Regulates Protein Synthesis. FASEB Journal, 2022, 36, . | 0.5 | 0         |
| 81 | Butyrate Analogues Mimicking Hypoxia by the Chemical Stabilization of Hypoxia Inducible Factor (HIF).<br>FASEB Journal, 2022, 36, .                                           | 0.5 | 0         |