
Marcelo Maciel Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7743800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ni-ZSM-5 catalysts: Detailed characterization of metal sites for proper catalyst design. Journal of Catalysis, 2010, 269, 103-109.	3.1	135
2	Hierarchical pore ZSM-5 zeolite structures: From micro- to macro-engineering of structured catalysts. Chemical Engineering Journal, 2010, 161, 397-402.	6.6	77
3	Design of MFI Zeolite-Based Composites with Hierarchical Pore Structure: A New Generation of Structured Catalysts. Crystal Growth and Design, 2009, 9, 3721-3729.	1.4	47
4	Nature and location of cerium in Ce-loaded Y zeolites as revealed by HRTEM and spectroscopic techniques. Microporous and Mesoporous Materials, 2007, 100, 276-286.	2.2	43
5	Synthesis of zeolite crystals with unusual morphology: Application in acid catalysis. Applied Catalysis A: General, 2010, 390, 102-109.	2.2	39
6	Alkane Activation over Acidic Zeolites: The First Step. Chemistry - A European Journal, 2010, 16, 573-576.	1.7	38
7	Interaction between Ni and V with USHY and rare earth HY zeolite during hydrothermal deactivation. Applied Catalysis A: General, 2005, 286, 196-201.	2.2	37
8	Waste biomass to liquids: Low temperature conversion of sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments. Biomass and Bioenergy, 2011, 35, 2106-2116.	2.9	36
9	Role of nickel and vanadium over USY and RE-USY coke formation. Applied Catalysis A: General, 2006, 315, 68-73.	2.2	34
10	Rational Design of Microporous and Mesoporous Solids for Catalysis: From the Molecule to the Reactor. ChemCatChem, 2011, 3, 1263-1272.	1.8	34
11	HUSY zeolite modified by lanthanum: Effect of lanthanum introduction as a vanadium trap. Microporous and Mesoporous Materials, 2010, 133, 75-81.	2.2	32
12	Synthesis and characterization of niobium oxide layers on silica and the interaction with nickel. Applied Catalysis A: General, 2000, 197, 99-106.	2.2	31
13	How Keggin-Type Polyoxometalates Self-Organize into Crystals. Crystal Growth and Design, 2010, 10, 371-378.	1.4	30
14	The effect of alumina on FCC catalyst in the presence of nickel and vanadium. Applied Catalysis A: General, 2010, 388, 15-21.	2.2	28
15	SMSI effect in the butadiene hydrogenation on Pd-Cu bimetallic catalysts. Catalysis Today, 1993, 16, 407-415.	2.2	26
16	Biomass-mediated ZSM-5 zeolite synthesis: when self-assembly allows to cross the Si/Al lower limit. Chemical Science, 2018, 9, 6532-6539.	3.7	26
17	Mechanistic insights of CO2-coke reaction during the regeneration step of the fluid cracking catalyst. Applied Catalysis A: General, 2008, 336, 40-47.	2.2	25
18	Gasoline from Biomass through Refineryâ€Friendly Carbohydrateâ€Based Bioâ€Oil Produced by Ketalization. ChemSusChem, 2014, 7, 1627-1636.	3.6	23

#	Article	IF	CITATIONS
19	Iron doped manganese oxide octahedral molecular sieve as potential catalyst for SO x removal at FCC. Applied Catalysis A: General, 2015, 498, 69-75.	2.2	21
20	Effect of iron and calcium over USY coke formation. Applied Catalysis A: General, 2008, 339, 61-67.	2.2	20
21	Synthesis of Keggin-type polyoxometalate crystals. Solid State Sciences, 2010, 12, 1866-1869.	1.5	19
22	Investigation of the nature of V-species on alumina modified by alkali cations: Development of multi-functional DeSO catalysts. Applied Catalysis A: General, 2012, 449, 23-30.	2.2	17
23	Physicochemical Properties of Pyrolysis Bio-Oil from Sugarcane Straw and Sugarcane in Natura. Journal of Biomaterials and Nanobiotechnology, 2013, 04, 10-19.	1.0	17
24	Strategy to design zeolite catalysts in the presence of biomass. Microporous and Mesoporous Materials, 2017, 254, 28-36.	2.2	17
25	The nickel–niobia–silica interactions at low nickel contents. Catalysis Today, 2000, 57, 291-296.	2.2	16
26	Unveiling the Chemical Composition of Sugar Cane Biocrudes by Liquid Chromatography–Tandem Mass Spectrometry. Energy & Fuels, 2015, 29, 8082-8087.	2.5	16
27	Biohydrocarbons Production under Standard Refinery Conditions by means of a Representative Ketal Compound of Biocrude. Energy Technology, 2017, 5, 428-441.	1.8	16
28	Insights to Achieve a Better Control of Silicon-Aluminum Ratio and ZSM-5 Zeolite Crystal Morphology through the Assistance of Biomass. Catalysts, 2016, 6, 30.	1.6	15
29	Catalyst regeneration using CO ₂ as reactant through reverseâ€Boudouard reaction with coke. , 2017, 7, 843-851.		15
30	1,3-Butadiene hydrogenation on pd-supported systems: geometric effects. Brazilian Journal of Chemical Engineering, 2002, 19, 187-194.	0.7	14
31	Biomassâ€assisted Zeolite Syntheses as a Tool for Designing New Acid Catalysts. ChemCatChem, 2017, 9, 2065-2079.	1.8	14
32	Effect of vanadium contamination on H-ZSM-5 zeolite deactivation. Catalysis Today, 2008, 133-135, 805-808.	2.2	13
33	Nickel-doped small pore zeolite bifunctional catalysts: A way to achieve high activity and yields into olefins. Catalysis Today, 2014, 226, 67-72.	2.2	13
34	Vanadium-lithium alumina a potential additive for coke oxidation by CO2 in the presence of O2 during FCC catalyst regeneration. Applied Catalysis B: Environmental, 2016, 196, 117-126.	10.8	13
35	Vanadium effect on HUSY zeolite deactivation during hydrothermal treatment and cyclohexane model reaction. Applied Catalysis A: General, 2005, 292, 82-89.	2.2	12
36	Valorization of Sugar Cane Bagasse and Jatropha Curcas Cake: Production of a Biocrude by Acetylation Reaction under Microwave Radiation. Energy & Fuels, 2015, 29, 917-921.	2.5	12

#	Article	IF	CITATIONS
37	Improving textural properties of Î ³ -alumina by using second generation biomass in conventional hydrothermal method. Microporous and Mesoporous Materials, 2015, 207, 134-141.	2.2	12
38	ZSM-5 synthesis by the assistance of biomass and biomass-derivate compounds. Microporous and Mesoporous Materials, 2018, 263, 251-256.	2.2	12
39	Evidence of multi-component interaction in a V–Ce–HUSY catalyst: Is the cerium–EFAL interaction the key of vanadium trapping?. Microporous and Mesoporous Materials, 2008, 115, 253-260.	2.2	11
40	Catalytic sugarcane bagasse transformation into a suitable biocrude for hydrocarbon production in typical refinery processes. Sustainable Energy and Fuels, 2020, 4, 4158-4169.	2.5	11
41	Synthesis and characterization of vanadium species coated on alumina, magnesium oxide and hydrotalcite supports to SOx removal. Applied Catalysis A: General, 2013, 462-463, 46-55.	2.2	10
42	Vanadium–potassium–alumina catalyst: A way of promoting CO2 and coke reaction in the presence of O2 during the FCC catalyst regeneration. Catalysis Communications, 2014, 51, 42-45.	1.6	9
43	Sugar ketals as a platform molecule to overcome the limitation of converting biomass into green-hydrocarbons in a typical refinery. Sustainable Energy and Fuels, 2020, 4, 1312-1319.	2.5	9
44	Insights into the Role of Framework and Nonframework Aluminum in the Protolytic Reaction of Carbon–Carbon and Tertiary Carbon–Hydrogen Bonds of Isobutane. Journal of Physical Chemistry C, 2021, 125, 11636-11647.	1.5	9
45	Use of Nb2O5 as nickel passivating agent: characterisation of the Ni/Nb2O5/SiO2 system. Catalysis Today, 2003, 78, 459-465.	2.2	8
46	Isobutane and n-butane cracking on Ni-ZSM-5 catalyst: Effect on light olefin formation. Applied Catalysis A: General, 2011, 403, 58-58.	2.2	8
47	Vanadium and alumina modified with groups I and II elements for CO2 and coke reaction under fluid catalytic cracking process. Applied Catalysis B: Environmental, 2015, 164, 225-233.	10.8	8
48	Understanding bifunctional behavior of Ni/HZSM5 catalyst under isobutane atmosphere. Molecular Catalysis, 2018, 458, 145-151.	1.0	8
49	Application of Response Surface Methodology for Ethanol Conversion into Hydrocarbons Using ZSM-5 Zeolites. Catalysts, 2019, 9, 617.	1.6	7
50	Influence of Biomass Residues on the Metastability of Zeolite Structures. Nanoscience and Nanotechnology Letters, 2016, 8, 917-923.	0.4	7
51	Nickel Activation for Hydrogenolysis Reaction on USY Zeolite. Catalysis Letters, 2004, 92, 81-86.	1.4	6
52	Green-aromatic production in typical conditions of fluidized catalytic cracking. Fuel, 2019, 254, 115684.	3.4	6
53	Ketal Sugar Conversion Into Green Hydrocarbons by Faujasite Zeolite in a Typical Catalytic Cracking Process. Frontiers in Chemistry, 2019, 7, 720.	1.8	6
54	The effect of cerium introduction on vanadium-USY catalysts. Studies in Surface Science and Catalysis, 2000, 143, 915-923.	1.5	5

#	Article	IF	CITATIONS
55	Cyclohexane as a Probe to Nickel Vanadium Interaction in FCC Catalysts. Studies in Surface Science and Catalysis, 2001, , 343-350.	1.5	5
56	Carbon Dioxide, Chemical Valorization, and Mitigation in the Refinery. , 2013, , 535-562.		5
57	Coupling CH4 pyrolysis with CO2 activation via reverse Boudouard reaction in the presence of O2 through a multifunctional catalyst Ni-V-Li/Al2O3. Journal of CO2 Utilization, 2016, 16, 458-465.	3.3	5
58	Use of <i>Kappaphycus alvarezii</i> Biomass for the Production of Carbohydrate Isopropylidene-Ketal-Based Biocrude. Energy & Fuels, 2017, 31, 9422-9428.	2.5	5
59	Hydroconversion of xylose derived ketals: A key strategy for producing A broad range of green-hydrocarbons suitable as fuels and petrochemicals. Applied Catalysis A: General, 2021, 609, 117911.	2.2	5
60	Regeneration of Spent HY Zeolite Obtained After Bio-Oil Cracking in the Presence of CO ₂ . Advanced Chemistry Letters, 2013, 1, 308-316.	0.1	5
61	VO ²⁺ Reaction with Hydrotalcite and Hydrotalciteâ€Derived Oxide: The Effect of the Vanadium Loading on the Structure of Catalyst Precursors and on the Vanadium Species. European Journal of Inorganic Chemistry, 2013, 2013, 241-247.	1.0	4
62	Recent progress in the biomass-mediated synthesis of porous materials. Inorganica Chimica Acta, 2019, 487, 379-386.	1.2	4
63	Vanadium–Potassium-Alumina Additives for SOx Removal in FCC: Effect of Vanadium Content. Catalysis Letters, 2015, 145, 1382-1387.	1.4	3
64	Propylene conversion in Ferrierite: Effect of mesoporous formation. Applied Catalysis A: General, 2017, 548, 89-95.	2.2	3
65	Hydrodeoxygenation of Xylose Isopropylidene Ketal Over Pd/HBEA Catalyst for the Production of Green Fuels. Frontiers in Chemistry, 2021, 9, 729787.	1.8	3
66	Thermal treatment study of vanadium-loaded hydrotalcites employing in situ DXAS. Catalysis Today, 2008, 133-135, 210-215.	2.2	2