
Michael Freitag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7743251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
2	Recent loss of the Dim2 DNA methyltransferase decreases mutation rate in repeats and changes evolutionary trajectory in a fungal pathogen. PLoS Genetics, 2021, 17, e1009448.	3.5	32
3	Comparative Genomics of Eight Fusarium graminearum Strains with Contrasting Aggressiveness Reveals an Expanded Open Pangenome and Extended Effector Content Signatures. International Journal of Molecular Sciences, 2021, 22, 6257.	4.1	12
4	Genome compartmentalization predates species divergence in the plant pathogen genus Zymoseptoria. BMC Genomics, 2020, 21, 588.	2.8	34
5	Polycomb Repression without Bristles: Facultative Heterochromatin and Genome Stability in Fungi. Genes, 2020, 11, 638.	2.4	26
6	A metabolomics-guided approach to discover Fusarium graminearum metabolites after removal of a repressive histone modification. Fungal Genetics and Biology, 2019, 132, 103256.	2.1	30
7	Destabilization of chromosome structure by histone H3 lysine 27 methylation. PLoS Genetics, 2019, 15, e1008093.	3.5	75
8	Involvement of a G Protein Regulatory Circuit in Alternative Oxidase Production in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2019, 9, 3453-3465.	1.8	3
9	Application of the Cre/lox System to Construct Auxotrophic Markers for Quantitative Genetic Analyses in Fusarium graminearum. Methods in Molecular Biology, 2018, 1848, 235-263.	0.9	4
10	Velvet domain protein VosA represses the zinc cluster transcription factor SclB regulatory network for Aspergillus nidulans asexual development, oxidative stress response and secondary metabolism. PLoS Genetics, 2018, 14, e1007511.	3.5	29
11	Extraordinary Genome Instability and Widespread Chromosome Rearrangements During Vegetative Growth. Genetics, 2018, 210, 517-529.	2.9	103
12	Expression of a Structural Protein of the Mycovirus FgV-ch9 Negatively Affects the Transcript Level of a Novel Symptom Alleviation Factor and Causes Virus Infection-Like Symptoms in Fusarium graminearum. Journal of Virology, 2018, 92, .	3.4	18
13	Alternative Oxidase Transcription Factors AOD2 and AOD5 of <i>Neurospora crassa</i> Control the Expression of Genes Involved in Energy Production and Metabolism. G3: Genes, Genomes, Genetics, 2017, 7, 449-466.	1.8	6
14	The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion. G3: Genes, Genomes, Genetics, 2017, 7, 129-142.	1.8	47
15	Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis. Scientific Reports, 2017, 7, 44296.	3.3	71
16	Centrochromatin of Fungi. Progress in Molecular and Subcellular Biology, 2017, 56, 85-109.	1.6	13
17	Omics Analyses of Trichoderma reesei CBS999.97 and QM6a Indicate the Relevance of Female Fertility to Carbohydrate-Active Enzyme and Transporter Levels. Applied and Environmental Microbiology, 2017, 83,	3.1	22
18	Histone Methylation by SET Domain Proteins in Fungi. Annual Review of Microbiology, 2017, 71, 413-439.	7.3	106

MICHAEL FREITAG

#	Article	IF	CITATIONS
19	A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. , 2017, 5, 571-597.		18
20	Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity. MBio, 2017, 8, .	4.1	25
21	Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry. Methods in Molecular Biology, 2017, 1507, 153-168.	0.9	8
22	The kinetochore interaction network (KIN) of ascomycetes. Mycologia, 2016, 108, 485-505.	1.9	14
23	Knockâ€down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in <i>Fusarium fujikuroi</i> . Environmental Microbiology, 2016, 18, 4037-4054.	3.8	109
24	Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis of the <i>Penicillium chrysogenum</i> Velvet Protein PcVelA Identifies Methyltransferase PcLlmA as a Novel Downstream Regulator of Fungal Development. MSphere, 2016, 1, .	2.9	9
25	Normal chromosome conformation depends on subtelomeric facultative heterochromatin in <i>Neurospora crassa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15048-15053.	7.1	55
26	<i>Neurospora</i> chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Research, 2016, 26, 1069-1080.	5.5	64
27	Genomeâ€wide identification of target genes of a matingâ€ŧype αâ€domain transcription factor reveals functions beyond sexual development. Molecular Microbiology, 2015, 96, 1002-1022.	2.5	45
28	Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics and Chromatin, 2015, 8, 41.	3.9	139
29	Endogenous Small RNA Mediates Meiotic Silencing of a Novel DNA Transposon. G3: Genes, Genomes, Genetics, 2015, 5, 1949-1960.	1.8	34
30	Chromatin analyses of Zymoseptoria tritici : Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). Fungal Genetics and Biology, 2015, 79, 63-70.	2.1	35
31	Genome Sequence and Annotation of Trichoderma parareesei , the Ancestor of the Cellulase Producer Trichoderma reesei. Genome Announcements, 2015, 3, .	0.8	28
32	Genome-Wide Characterization of Light-Regulated Genes in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1731-1745.	1.8	82
33	Epigenetic Control of Effector Gene Expression in the Plant Pathogenic Fungus Leptosphaeria maculans. PLoS Genetics, 2014, 10, e1004227.	3.5	209
34	Increase in cellular triacylglycerol content and emergence of large ER-associated lipid droplets in the absence of CDP-DG synthase function. Molecular Biology of the Cell, 2014, 25, 4083-4095.	2.1	13
35	Analysis of clock-regulated genes in <i>Neurospora</i> reveals widespread posttranscriptional control of metabolic potential. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16995-17002.	7.1	131
36	Heterochromatin Controls γH2A Localization in Neurospora crassa. Eukaryotic Cell, 2014, 13, 990-1000.	3.4	26

MICHAEL FREITAG

#	Article	IF	CITATIONS
37	Variability of chromosome structure in pathogenic fungi—of â€~ends and odds'. Current Opinion in Microbiology, 2014, 20, 19-26.	5.1	78
38	Thermal Stress Triggers Broad Pocillopora damicornis Transcriptomic Remodeling, while Vibrio coralliilyticus Infection Induces a More Targeted Immuno-Suppression Response. PLoS ONE, 2014, 9, e107672.	2.5	80
39	Genetic Manipulation of the Fusarium fujikuroi Fusarin Gene Cluster Yields Insight into the Complex Regulation and Fusarin Biosynthetic Pathway. Chemistry and Biology, 2013, 20, 1055-1066.	6.0	107
40	Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites. PLoS Pathogens, 2013, 9, e1003475.	4.7	406
41	The Fusarium graminearum Histone H3 K27 Methyltransferase KMT6 Regulates Development and Expression of Secondary Metabolite Gene Clusters. PLoS Genetics, 2013, 9, e1003916.	3.5	233
42	Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree <i>Populus trichocarpa</i> . New Phytologist, 2012, 196, 713-725.	7.3	173
43	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	27.8	1,442
44	The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion. PLoS Genetics, 2009, 5, e1000618.	3.5	402
45	The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. Epigenetics and Chromatin, 2008, 1, 5.	3.9	72
46	Controlling DNA methylation: many roads to one modification. Current Opinion in Genetics and Development, 2005, 15, 191-199.	3.3	100
47	DNA Methylation Is Independent of RNA Interference in Neurospora. Science, 2004, 304, 1939-1939.	12.6	116
48	GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genetics and Biology, 2004, 41, 897-910.	2.1	306
49	HP1 Is Essential for DNA Methylation in Neurospora. Molecular Cell, 2004, 13, 427-434.	9.7	207
50	A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8802-8807.	7.1	228
51	A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. , 0, , 571-597.		0