Yaling Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7743170/publications.pdf

Version: 2024-02-01

26 2,151 20 26 papers citations h-index g-index

26 26 26 2765
all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Studying Complex Evolution of Hyperelastic Materials under External Field Stimuli using Artificial Neural Networks with Spatiotemporal Features in a Smallâ€Scale Dataset. Advanced Materials, 2022, 34, e2200908.	21.0	7
2	A Facile Preparation of Musselâ€Inspired Poly(dopamine phosphonateâ€ <i>co</i> à€PEGMA)s via a Oneâ€Pot Multicomponent Polymerization System. Macromolecular Rapid Communications, 2020, 41, e1900533.	3.9	11
3	Near-infrared light-induced shape memory, self-healable and anti-bacterial elastomers prepared by incorporation of a diketopyrrolopyrrole-based conjugated polymer. Materials Chemistry Frontiers, 2019, 3, 836-841.	5.9	38
4	Enabling shape memory and healable effects in a conjugated polymer by incorporating siloxane <i>via</i> dynamic imine bond. Chemical Communications, 2018, 54, 10092-10095.	4.1	22
5	Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture. Journal of Visualized Experiments, 2017, , .	0.3	4
6	Synthesis of an injectable, self-healable and dual responsive hydrogel for drug delivery and 3D cell cultivation. Polymer Chemistry, 2017, 8, 537-544.	3.9	93
7	One-pot synthesis and biological imaging application of an amphiphilic fluorescent copolymer via a combination of RAFT polymerization and Schiff base reaction. Polymer Chemistry, 2015, 6, 2133-2138.	3.9	43
8	Multicomponent Polymerization System Combining Hantzsch Reaction and Reversible Addition–Fragmentation Chain Transfer to Efficiently Synthesize Well-Defined Poly(1,4-dihydropyridine)s. ACS Macro Letters, 2015, 4, 128-132.	4.8	50
9	From drug to adhesive: a new application of poly(dihydropyrimidin-2(1H)-one)s via the Biginelli polycondensation. Polymer Chemistry, 2015, 6, 4940-4945.	3.9	58
10	The power of one-pot: a hexa-component system containing π–π stacking, Ugi reaction and RAFT polymerization for simple polymer conjugation on carbon nanotubes. Polymer Chemistry, 2015, 6, 509-513.	3.9	48
11	Facile preparation of water dispersible red fluorescent organic nanoparticles and their cell imaging applications. Tetrahedron, 2014, 70, 3553-3559.	1.9	17
12	Fabrication of water-dispersible and biocompatible red fluorescent organic nanoparticles via PEGylation of aggregate induced emission enhancement dye and their cell imaging applications. Colloids and Surfaces B: Biointerfaces, 2014, 113, 435-441.	5.0	52
13	Fluorescent PEGylation agent by a thiolactone-based one-pot reaction: a new strategy for theranostic combinations. Polymer Chemistry, 2014, 5, 6656-6661.	3.9	28
14	Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polymer Chemistry, 2014, 5, 2704-2708.	3.9	93
15	â€ [~] One pot' synthesis of well-defined poly(aminophosphonate)s: time for the Kabachnik–Fields reaction on the stage of polymer chemistry. Polymer Chemistry, 2014, 5, 1857-1862.	3.9	90
16	Synthesis of Multifunctional Polymers through the Ugi Reaction for Protein Conjugation. Macromolecules, 2014, 47, 5607-5612.	4.8	76
17	Introducing mercaptoacetic acid locking imine reaction into polymer chemistry as a green click reaction. Polymer Chemistry, 2014, 5, 2695-2699.	3.9	51
18	A New Class of Red Fluorescent Organic Nanoparticles: Noncovalent Fabrication and Cell Imaging Applications. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3600-3606.	8.0	93

#	Article	IF	CITATION
19	Nonionic polymer cross-linked chitosan hydrogel: preparation and bioevaluation. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1564-1574.	3.5	26
20	Self-healing Hydrogels Based on Dynamic Chemistry and Their Biomedical Applications. Acta Chimica Sinica, 2013, 71, 485.	1.4	23
21	Combining mussel-inspired chemistry and the Michael addition reaction to disperse carbon nanotubes. RSC Advances, 2012, 2, 12153.	3.6	79
22	Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polymer Chemistry, 2012, 3, 3235.	3.9	266
23	A magnetic self-healing hydrogel. Chemical Communications, 2012, 48, 9305.	4.1	283
24	Applications of self-assembled one-bilayer nanofilms based on hydroxyl-containing tetraphenylethene derivative's nanoaggregates as chemosensors to volatile of solid nitroaromatics. Sensors and Actuators B: Chemical, 2012, 161, 587-593.	7.8	17
25	Synthesis of Multiresponsive and Dynamic Chitosan-Based Hydrogels for Controlled Release of Bioactive Molecules. Biomacromolecules, 2011, 12, 2894-2901.	5.4	57 8
26	Electrosynthsis of large polypyrrole films by multi-potential steps method. Science China Technological Sciences, 2011, 54, 1697-1702.	4.0	5