Marian B Gorzalczany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7743039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Business Intelligence in Airline Passenger Satisfaction Study—A Fuzzy-Genetic Approach with Optimized Interpretability-Accuracy Trade-Off. Applied Sciences (Switzerland), 2021, 11, 5098.	2.5	4
2	Evolution of SOMs' Structure and Learning Algorithm: From Visualization of High-Dimensional Data to Clustering of Complex Data. Algorithms, 2020, 13, 109.	2.1	2
3	A Modern Data-Mining Approach Based on Genetically Optimized Fuzzy Systems for Interpretable and Accurate Smart-Grid Stability Prediction. Energies, 2020, 13, 2559.	3.1	10
4	Gene-Promoter-Sequence Recognition $\hat{a} \in $ an Interpretable and Accurate Fuzzy-Genetic Approach. , 2019, , .		0
5	Uncovering informative genes from colon cancer gene expression data via multi-step clustering based on generalized SOMs with splitting-merging structures. , 2019, , .		0
6	ECG Time Series Classification via Genetic-Fuzzy Approach Based on Accuracy-Interpretability Trade-Off Optimization. , 2018, , .		1
7	Electricity Consumption Data Clustering for Load Profiling Using Generalized Self-Organizing Neural Networks with Evolving Splitting-Merging Structures. , 2018, , .		3
8	Time-series-dynamics Modeling and Forecasting – An Accurate and Interpretable Genetic-Fuzzy Approach. Advances in Intelligent Systems and Computing, 2018, , 165-175.	0.6	0
9	Generalized Self-Organizing Maps for Automatic Determination of the Number of Clusters and Their Multiprototypes in Cluster Analysis. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29, 1-13.	11.3	14
10	Interpretable and accurate medical data classification – a multi-objective genetic-fuzzy optimization approach. Expert Systems With Applications, 2017, 71, 26-39.	7.6	62
11	Heart-disease diagnosis decision support employing fuzzy systems with genetically optimized accuracy-interpretability trade-off. , 2017, , .		2
12	UniProt protein sequence data classification using genetically-optimized fuzzy rule-based systems. , 2017, , .		0
13	Classification of Splice-Junction DNA Sequences Using Multi-objective Genetic-Fuzzy Optimization Techniques. Lecture Notes in Computer Science, 2017, , 638-648.	1.3	2
14	Gene expression data clustering using tree-like SOMs with evolving splitting-merging structures. , 2016, , .		3
15	A multi-objective-genetic-optimization-based data-driven fuzzy classifier for technical applications. , 2016, , .		6
16	An improved multi-objective evolutionary optimization of data-mining-based fuzzy decision support systems. , 2016, , .		8
17	A multi-objective genetic optimization for fast, fuzzy rule-based credit classification with balanced accuracy and interpretability. Applied Soft Computing Journal, 2016, 40, 206-220.	7.2	87
18	Handling fuzzy systems' accuracy-interpretability trade-off by means of multi-objective evolutionary optimization methods – selected problems. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2015, 63, 791-798.	0.8	11

MARIAN B GORZALCZANY

#	Article	IF	CITATIONS
19	Microarray Leukemia Gene Data Clustering by Means of Generalized Self-organizing Neural Networks with Evolving Tree-Like Structures. Lecture Notes in Computer Science, 2015, , 15-25.	1.3	4
20	Generalized Tree-Like Self-Organizing Neural Networks with Dynamically Defined Neighborhood for Cluster Analysis. Lecture Notes in Computer Science, 2014, , 713-725.	1.3	7
21	Accuracy vs. Interpretability of Fuzzy Rule-Based Classifiers: An Evolutionary Approach. Lecture Notes in Computer Science, 2012, , 222-230.	1.3	21
22	A Modified Pittsburg Approach to Design a Genetic Fuzzy Rule-Based Classifier from Data. Lecture Notes in Computer Science, 2010, , 88-96.	1.3	15
23	WWW-Newsgroup-Document Clustering by Means of Dynamic Self-organizing Neural Networks. Lecture Notes in Computer Science, 2008, , 40-51.	1.3	8
24	Cluster Analysis Via Dynamic Self-organizing Neural Networks. Lecture Notes in Computer Science, 2006, , 593-602.	1.3	11
25	Application of Genetic Algorithms and Kohonen Networks to Cluster Analysis. Lecture Notes in Computer Science, 2004, , 556-561.	1.3	11
26	Computational Intelligence Systems and Applications. Studies in Fuzziness and Soft Computing, 2002, , .	0.8	46
27	Neuro-Fuzzy Systems for Rule-Based Modelling of Dynamic Processes. International Series in Intelligent Technologies, 2002, , 135-146.	0.1	4
28	A Computational-Intelligence-Based Approach to Decision Support. Series in Machine Perception and Artificial Intelligence, 2000, , 51-73.	0.1	1
29	On some idea of a neuro-fuzzy controller. Information Sciences, 1999, 120, 69-87.	6.9	17
30	Neuro-fuzzy approach versus rough-set inspired methodology for intelligent decision support. Information Sciences, 1999, 120, 45-68.	6.9	37
31	Interval-valued fuzzy inference involving uncertain (inconsistent) conditional propositions. Fuzzy Sets and Systems, 1989, 29, 235-240.	2.7	14
32	An interval-valued fuzzy inference method— Some basic properties. Fuzzy Sets and Systems, 1989, 31, 243-251.	2.7	99
33	Interval-valued fuzzy controller based on verbal model of object. Fuzzy Sets and Systems, 1988, 28, 45-53.	2.7	64
34	Decision making in signal transmission problems with interval-valued fuzzy sets. Fuzzy Sets and Systems, 1987, 23, 191-203.	2.7	62
35	A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets and Systems, 1987, 21, 1-17.	2.7	899
36	On stability of formal fuzziness systems. Information Sciences, 1980, 22, 51-68.	6.9	38

#	Article	IF	CITATIONS
37	Fuzzy neural networks versus alternative approaches in medical decision support. , 0, , .		3
38	An idea of the application of fuzzy neural networks to medical decision support systems. , 0, , .		4
39	Business data modelling and forecasting with the use of fuzzy neural networks. , 0, , .		1
40	A neuro-fuzzy-genetic classifier for technical applications. , 0, , .		11
41	Neuro-fuzzy networks in time series modelling. , 0, , .		2
42	Generalized SOMs with Splitting-Merging Tree-Like Structures for WWW-Document Clustering. , 0, , .		3