
Birgit Kemmerling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7742860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Effects of Biogenic Zinc Nanoparticles on the Growth and Development of Brassica napus L. Revealed by Proteomics and Transcriptomics. Frontiers in Plant Science, 2022, 13, 798751.	1.7	8
2	Specifying the role of BAK1â€interacting receptorâ€ike kinase 3 in brassinosteroid signaling. Journal of Integrative Plant Biology, 2020, 62, 456-469.	4.1	12
3	Probing the immune responses to nanoparticles across environmental species. A perspective of the EU Horizon 2020 project PANDORA. Environmental Science: Nano, 2020, 7, 3216-3232.	2.2	17
4	Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27044-27053.	3.3	63
5	Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small, 2020, 16, e2000598.	5.2	35
6	Nano zinc elicited biochemical characterization, nutritional assessment, antioxidant enzymes and fatty acid profiling of rapeseed. PLoS ONE, 2020, 15, e0241568.	1.1	15
7	The Arabidopsis Leucine-Rich Repeat Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and Stabilizes BAK1. Plant Cell, 2017, 29, 2285-2303.	3.1	94
8	Evolutionarily distant pathogens require the <i>Arabidopsis</i> phytosulfokine signalling pathway to establish disease. Plant, Cell and Environment, 2016, 39, 1396-1407.	2.8	34
9	BIR2 affects complex formation of BAK1 with ligand binding receptors in plant defense. Plant Signaling and Behavior, 2014, 9, e28944.	1.2	21
10	Altered growth and improved resistance of <i><scp>A</scp>rabidopsis</i> against <i><scp>P</scp>seudomonas syringae</i> by overexpression of the basic amino acid transporter <scp><i>AtCAT1</i></scp> . Plant, Cell and Environment, 2014, 37, 1404-1414.	2.8	49
11	The Leucine-Rich Repeat Receptor Kinase BIR2 Is a Negative Regulator of BAK1 in Plant Immunity. Current Biology, 2014, 24, 134-143.	1.8	219
12	A novel <scp>A</scp> rabidopsis <scp>CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1)</scp> mutant with enhanced pathogenâ€induced cell death and altered receptor processing. New Phytologist, 2014, 204, 955-967.	3.5	55
13	Structure of the pseudokinase domain of BIR2, a regulator of BAK1-mediated immune signaling in Arabidopsis. Journal of Structural Biology, 2014, 186, 112-121.	1.3	53
14	The tyrosineâ€sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. Plant Journal, 2013, 73, 469-482.	2.8	163
15	Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during <i>Arabidopsis</i> immunity to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6211-6216.	3.3	165
16	PSKR1 and PSY1R-mediated regulation of plant defense responses. Plant Signaling and Behavior, 2013, 8, e24119.	1.2	47
17	A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. Frontiers in Plant Science, 2011, 2, 88.	1.7	53
18	The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. European Journal of Cell Biology, 2010, 89, 169-174.	1.6	193

BIRGIT KEMMERLING

#	Article	IF	CITATIONS
19	Perception of the Arabidopsis Danger Signal Peptide 1 Involves the Pattern Recognition Receptor AtPEPR1 and Its Close Homologue AtPEPR2. Journal of Biological Chemistry, 2010, 285, 13471-13479.	1.6	317
20	A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21896-21901.	3.3	110
21	Heat Shock Factors HsfB1 and HsfB2b Are Involved in the Regulation of Pdf1.2 Expression and Pathogen Resistance in Arabidopsis. Molecular Plant, 2009, 2, 152-165.	3.9	138
22	Microtubule-Associated Kinase-like Protein RUNKEL Needed for Cell Plate Expansion in Arabidopsis Cytokinesis. Current Biology, 2009, 19, 518-523.	1.8	44
23	Microtubule-Associated Kinase-like Protein RUNKEL Needed for Cell Plate Expansion in Arabidopsis Cytokinesis. Current Biology, 2009, 19, 536.	1.8	0
24	Separable roles of the <i>Pseudomonas syringae</i> pv. <i>phaseolicola</i> accessory protein HrpZ1 in ionâ€conducting pore formation and activation of plant immunity. Plant Journal, 2009, 57, 706-717.	2.8	52
25	One for all: the receptor-associated kinase BAK1. Trends in Plant Science, 2009, 14, 535-541.	4.3	281
26	Plant systems for recognition of pathogen-associated molecular patterns. Seminars in Cell and Developmental Biology, 2009, 20, 1025-1031.	2.3	93
27	Chapter 1 PAMP-Triggered Basal Immunity in Plants. Advances in Botanical Research, 2009, , 1-38.	0.5	25
28	Brassinosteroid-independent functions of the BRI1-associated kinase BAK1/SERK3. Plant Signaling and Behavior, 2008, 3, 116-118.	1.2	11
29	Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE Proteins Serve Brassinosteroid-Dependent and -Independent Signaling Pathways Â. Plant Physiology, 2008, 148, 611-619.	2.3	175
30	Bacteria-derived Peptidoglycans Constitute Pathogen-associated Molecular Patterns Triggering Innate Immunity in Arabidopsis. Journal of Biological Chemistry, 2007, 282, 32338-32348.	1.6	270
31	Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins. Plant Cell, 2007, 18, 3721-3744.	3.1	314
32	A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448, 497-500.	13.7	1,619
33	The BRI1-Associated Kinase 1, BAK1, Has a Brassinolide-Independent Role in Plant Cell-Death Control. Current Biology, 2007, 17, 1116-1122.	1.8	356
34	Signal Perception and Transduction in Plant Innate Immunity. , 2006, , 95-109.		1
35	Specific Bacterial Suppressors of MAMP Signaling Upstream of MAPKKK in Arabidopsis Innate Immunity. Cell, 2006, 125, 563-575.	13.5	386
36	Receptor protein kinases – pattern recognition receptors in plant immunity. Trends in Plant Science, 2006, 11, 519-522.	4.3	93

BIRGIT KEMMERLING

#	Article	IF	CITATIONS
37	Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics, 2006, 38, 716-720.	9.4	430
38	Innate immunity in plants and animals: striking similarities and obvious differences. Immunological Reviews, 2004, 198, 249-266.	2.8	1,071
39	NPP1, aPhytophthora-associated trigger of plant defense in parsley andArabidopsis. Plant Journal, 2002, 32, 375-390.	2.8	289
40	Expression of ?-1,3-glucanase and chitinase in healthy, stem-rust-affected and elicitor-treated near-isogenic wheat lines showingSr5-orSr24-specified race-specific rust resistance. Planta, 1997, 201, 235-244.	1.6	61
41	Pathogen-Associated Molecular Patterns (PAMP) and PAMP-Triggered Immunity. , 0, , 16-47.		7
42	Signal Perception and Transduction in Plant Innate Immunity. , 0, , 95-109.		0