Jorg Kotzka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7742813/publications.pdf

Version: 2024-02-01

172457 182427 2,933 84 29 51 citations h-index g-index papers 90 90 90 4182 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes and Endocrinology, the, 2019, 7, 684-694.	11.4	364
2	Liver-Specific Expression of Transcriptionally Active SREBP-1c Is Associated with Fatty Liver and Increased Visceral Fat Mass. PLoS ONE, 2012, 7, e31812.	2.5	141
3	MAP Kinases Erk1/2 Phosphorylate Sterol Regulatory Element-binding Protein (SREBP)-1a at Serine 117 in Vitro. Journal of Biological Chemistry, 2000, 275, 33302-33307.	3.4	139
4	Secretome profiling of primary human skeletal muscle cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1011-1017.	2.3	138
5	SREBP-1 Mediates Activation of the Low Density Lipoprotein Receptor Promoter by Insulin and Insulin-like Growth Factor-I. Journal of Biological Chemistry, 1996, 271, 7128-7133.	3.4	137
6	Mechanisms of Insulin Resistance in Primary and Secondary Nonalcoholic Fatty Liver. Diabetes, 2017, 66, 2241-2253.	0.6	124
7	Insulin-activated Erk-mitogen-activated Protein Kinases Phosphorylate Sterol Regulatory Element-binding Protein-2 at Serine Residues 432 and 455 in Vivo. Journal of Biological Chemistry, 2004, 279, 22404-22411.	3.4	99
8	Exosomal proteins constitute an essential part of the human adipose tissue secretome. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140172.	2.3	75
9	ADD1/SREBP-1c Mediates Insulin-Induced Gene Expression Linked to the MAP Kinase Pathway. Biochemical and Biophysical Research Communications, 1998, 249, 375-379.	2.1	73
10	The peroxisome proliferator activated receptor gamma Pro12Ala polymorphism is associated with a lower hirsutism score and increased insulin sensitivity in women with polycystic ovary syndrome. Clinical Endocrinology, 2005, 62, 573-579.	2.4	68
11	Specific Metabolic Profiles and Their Relationship to Insulin Resistance in Recent-Onset Type 1 and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2130-2140.	3.6	64
12	Indirect calorimetry in humans: a postcalorimetric evaluation procedure for correction of metabolic monitor variability. American Journal of Clinical Nutrition, 2013, 97, 763-773.	4.7	63
13	Combinatorial hexapeptide ligand libraries (ProteoMiner ^{â,,¢}): An innovative fractionation tool for differential quantitative clinical proteomics. Archives of Physiology and Biochemistry, 2009, 115, 155-160.	2.1	60
14	Identification of Major Tyrosine Phosphorylation Sites in the Human Insulin Receptor Substrate Gab-1 by Insulin Receptor Kinase in Vitro. Biochemistry, 2000, 39, 10898-10907.	2.5	56
15	Identification of Tyrosine Phosphorylation Sites in Human Gab-1 Protein by EGF Receptor Kinase in Vitroâ€. Biochemistry, 1999, 38, 151-159.	2.5	52
16	Identification of Major ERK-Related Phosphorylation Sites in Gab1. Biochemistry, 2004, 43, 12133-12140.	2.5	52
17	Tissue-Specific Differences in the Development of Insulin Resistance in a Mouse Model for Type 1 Diabetes. Diabetes, 2014, 63, 3856-3867.	0.6	51
18	A critical comparison between two classical and a kitâ€based method for mitochondria isolation. Proteomics, 2009, 9, 3209-3214.	2.2	46

#	Article	IF	CITATIONS
19	Role of Patatin-Like Phospholipase Domain–Containing 3 Gene for Hepatic Lipid Content and Insulin Resistance in Diabetes. Diabetes Care, 2020, 43, 2161-2168.	8.6	45
20	Peroxisomes compensate hepatic lipid overflow in mice with fatty liver. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 965-976.	2.4	43
21	Preventing Phosphorylation of Sterol Regulatory Element-Binding Protein 1a by MAP-Kinases Protects Mice from Fatty Liver and Visceral Obesity. PLoS ONE, 2012, 7, e32609.	2.5	42
22	Estrogen receptor- $\hat{l}\pm$ and Sp1 interact in the induction of the low density lipoprotein-receptor. Journal of Steroid Biochemistry and Molecular Biology, 2003, 86, 113-121.	2.5	41
23	Phosphorylation of sterol regulatory element-binding protein (SREBP)-1c by p38 kinases, ERK and JNK influences lipid metabolism and the secretome of human liver cell line HepG2. Archives of Physiology and Biochemistry, 2014, 120, 216-227.	2.1	38
24	Phosphorylation of sterol regulatory element-binding protein (SREBP)-1a links growth hormone action to lipid metabolism in hepatocytes. Atherosclerosis, 2010, 213, 156-165.	0.8	36
25	Association between the PPARα L162V polymorphism, plasma lipoprotein levels, and atherosclerotic disease in patients with diabetes mellitus type 2 and in nondiabetic controls. American Heart Journal, 2004, 147, 1117-1124.	2.7	34
26	Sterol regulatory element-binding protein (SREBP)-1: gene regulatory target for insulin resistance?. Expert Opinion on Therapeutic Targets, 2004, 8, 141-149.	3.4	33
27	A mutation in the c-Fos gene associated with congenital generalized lipodystrophy. Orphanet Journal of Rare Diseases, 2013, 8, 119.	2.7	32
28	Insulin Resistance and Vulnerability to Cardiac Ischemia. Diabetes, 2018, 67, 2695-2702.	0.6	31
29	SREBPâ€1: Gene Regulatory Key to Syndrome X?. Annals of the New York Academy of Sciences, 2002, 967, 19-27.	3.8	30
30	Inactivation of SREBP-1a Phosphorylation Prevents Fatty Liver Disease in Mice: Identification of Related Signaling Pathways by Gene Expression Profiles in Liver and Proteomes of Peroxisomes. International Journal of Molecular Sciences, 2018, 19, 980.	4.1	30
31	Identification of a gene variant in the master regulator of lipid metabolism SREBP-1 in a family with a novel form of severe combined hypolipidemia. Atherosclerosis, 2011, 218, 134-143.	0.8	29
32	Effect of Sterol Regulatory Element Binding Protein-1a on the Mitochondrial Protein Pattern in Human Liver Cells Detected by 2D-DIGE. Biochemistry, 2005, 44, 5117-5128.	2.5	28
33	The adipokine sFRP4 induces insulin resistance and lipogenesis in the liver. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2671-2684.	3.8	28
34	Differential Patterns of Impaired Cardiorespiratory Fitness and Cardiac Autonomic Dysfunction in Recently Diagnosed Type 1 and Type 2 Diabetes. Diabetes Care, 2017, 40, 246-252.	8.6	26
35	Identification of the Secreted Proteins Originated from Primary Human Hepatocytes and HepG2 Cells. Nutrients, 2019, 11, 1795.	4.1	26
36	Metabolic flexibility and oxidative capacity independently associate with insulin sensitivity in individuals with newly diagnosed type 2 diabetes. Diabetologia, 2016, 59, 2203-2207.	6.3	25

#	Article	IF	CITATIONS
37	Alteration of Liver Peroxisomal and Mitochondrial Functionality in the NZO Mouse Model of Metabolic Syndrome. Proteomics - Clinical Applications, 2018, 12, 1700028.	1.6	25
38	Peroxisome proliferator-activated receptor-??2 Pro12Ala and endothelial nitric oxide synthase-4a/b gene polymorphisms are not associated with hypertension in diabetes mellitus type 2. Journal of Hypertension, 2005, 23, 301-308.	0.5	24
39	A variant of the glucose transporter gene SLC2A2 modifies the glycaemic response to metformin therapy in recently diagnosed type 2 diabetes. Diabetologia, 2019, 62, 286-291.	6.3	24
40	Fatty Liver Due to Increased de novo Lipogenesis: Alterations in the Hepatic Peroxisomal Proteome. Frontiers in Cell and Developmental Biology, 2019, 7, 248.	3.7	23
41	Association of transketolase polymorphisms with measures of polyneuropathy in patients with recently diagnosed diabetes. Diabetes/Metabolism Research and Reviews, 2017, 33, e2811.	4.0	22
42	Physiological Disturbance in Fatty Liver Energy Metabolism Converges on IGFBP2 Abundance and Regulation in Mice and Men. International Journal of Molecular Sciences, 2020, 21, 4144.	4.1	22
43	Rhein, a novel Histone Deacetylase (HDAC) inhibitor with antifibrotic potency in human myocardial fibrosis. Scientific Reports, 2020, 10, 4888.	3.3	22
44	So close and yet so far: mitochondria and peroxisomes are one but with specific talents. Archives of Physiology and Biochemistry, 2013, 119, 126-135.	2.1	21
45	Variants in Genes Controlling Oxidative Metabolism Contribute to Lower Hepatic ATP Independent of Liver Fat Content in Type 1 Diabetes. Diabetes, 2016, 65, 1849-1857.	0.6	21
46	Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes. Diabetologia, 2021, 64, 458-468.	6.3	20
47	Associations between explorative dietary patterns and serum lipid levels and their interactions with ApoA5 and ApoE haplotype in patients with recently diagnosed type 2 diabetes. Cardiovascular Diabetology, 2016, 15, 138.	6.8	18
48	Lipodystrophiesâ€"Disorders of the Fatty Tissue. International Journal of Molecular Sciences, 2020, 21, 8778.	4.1	18
49	Endogenous galactose formation in galactose-1-phosphate uridyltransferase deficiency. Archives of Physiology and Biochemistry, 2014, 120, 228-239.	2.1	17
50	Novel Insights into the Adipokinome of Obese and Obese/Diabetic Mouse Models. International Journal of Molecular Sciences, 2017, 18, 1928.	4.1	17
51	Two Novel Candidate Genes for Insulin Secretion Identified by Comparative Genomics of Multiple Backcross Mouse Populations. Genetics, 2018, 210, 1527-1542.	2.9	17
52	Adipokinome Signatures in Obese Mouse Models Reflect Adipose Tissue Health and Are Associated with Serum Lipid Composition. International Journal of Molecular Sciences, 2019, 20, 2559.	4.1	17
53	CDH13 abundance interferes with adipocyte differentiation and is a novel biomarker for adipose tissue health. International Journal of Obesity, 2018, 42, 1039-1050.	3.4	15
54	Histone deacetylase 5 regulates interleukin 6 secretion and insulin action in skeletal muscle. Molecular Metabolism, 2020, 42, 101062.	6.5	15

#	Article	IF	Citations
55	The RabGAPs TBC1D1 and TBC1D4 Control Uptake of Long-Chain Fatty Acids Into Skeletal Muscle via Fatty Acid Transporter SLC27A4/FATP4. Diabetes, 2020, 69, 2281-2293.	0.6	15
56	Reduced expression of stearoyl-CoA desaturase-1, but not free fatty acid receptor 2 or 4 in subcutaneous adipose tissue of patients with newly diagnosed type 2 diabetes mellitus. Nutrition and Diabetes, 2018, 8, 49.	3.2	13
57	Primary skin fibroblasts as human model system for proteome analysis. Proteomics, 2002, 2, 280.	2.2	11
58	Genetic variations in SREBP-1 and LXR $\hat{l}\pm$ are not directly associated to PCOS but contribute to the physiological specifics of the syndrome. Molecular Biology Reports, 2012, 39, 6835-6842.	2.3	10
59	BOND study: a randomised double-blind, placebo-controlled trial over 12 months to assess the effects of benfotiamine on morphometric, neurophysiological and clinical measures in patients with type 2 diabetes with symptomatic polyneuropathy. BMJ Open, 2022, 12, e057142.	1.9	9
60	Enhancing mass spectrometry based serum profiling by a combination of free flow electrophoresis and ClinProt ^{â,,¢} . Archives of Physiology and Biochemistry, 2009, 115, 259-266.	2.1	8
61	Isolation and Quality Control of Functional Mitochondria. Methods in Molecular Biology, 2015, 1264, 9-23.	0.9	8
62	2D-ToGo workflow: increasing feasibility and reproducibility of 2-dimensional gel electrophoresis. Archives of Physiology and Biochemistry, 2013, 119, 108-113.	2.1	7
63	Circulating adiponectin concentration is inversely associated with glucose tolerance and insulin secretion in people with newly diagnosed diabetes. Diabetic Medicine, 2017, 34, 239-244.	2.3	7
64	Correlates of Insulin-Stimulated Glucose Disposal in Recent-Onset Type 1 and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2295-2304.	3.6	6
65	Identification of novel adipokines differential regulated in C57BL/Ks and C57BL/6. Archives of Physiology and Biochemistry, 2014, 120, 208-215.	2.1	5
66	NDUFB6 Polymorphism Is Associated With Physical Activity-Mediated Metabolic Changes in Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 693683.	3.5	5
67	Characterization of a Postreceptor Signaling Defect That Impairs cfos Expression in Cultured Fibroblasts of a Patient with Insulin Resistance. Biochemical and Biophysical Research Communications, 2000, 268, 577-582.	2.1	4
68	Genetic variants in central metabolic genes influence some but not all relations of inflammatory markers in a collective with polycystic ovary syndrome. Archives of Physiology and Biochemistry, 2012, 118, 219-229.	2.1	4
69	Preparation of "Functional―Mitochondria: A Challenging Business. Methods in Molecular Biology, 2015, 1264, 1-8.	0.9	4
70	Divergent phenotypes in siblings with identical novel mutations in the HNF- $1\hat{l}$ ± gene leading to maturity onset diabetes of the young type 3. BMC Medical Genetics, 2016, 17, 36.	2.1	4
71	Investigating the Adipose Tissue Secretome: A Protocol to Generate High-Quality Samples Appropriate for Comprehensive Proteomic Profiling. Methods in Molecular Biology, 2015, 1295, 43-53.	0.9	4
72	Long-term adjustment of hepatic lipid metabolism after chronic stress and the role of FGF21. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166286.	3.8	4

#	Article	IF	CITATIONS
73	Nudix hydrolase NUDT19 regulates mitochondrial function and ATP production in murine hepatocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159153.	2.4	4
74	Adaptation of Oxidative Phosphorylation Machinery Compensates for Hepatic Lipotoxicity in Early Stages of MAFLD. International Journal of Molecular Sciences, 2022, 23, 6873.	4.1	4
75	Impact of insulin sensitivity, betaâ€cell function and glycaemic control on initiation of secondâ€line glucoseâ€lowering treatment in newly diagnosed type 2 diabetes. Diabetes, Obesity and Metabolism, 2017, 19, 866-873.	4.4	3
76	Association between copy-number variation on metabolic phenotypes and HDL-C levels in patients with polycystic ovary syndrome. Molecular Biology Reports, 2017, 44, 51-61.	2.3	3
77	Isolation and Quality Control of Functional Mitochondria. Methods in Molecular Biology, 2021, 2276, 41-55.	0.9	3
78	Identification of Novel Genes Involved in Hyperglycemia in Mice. International Journal of Molecular Sciences, 2022, 23, 3205.	4.1	3
79	Untargeted mass spectrometric approach in metabolic healthy offspring of patients with type 2 diabetes reveals medium-chain acylcarnitine as potential biomarker for lipid induced glucose intolerance (LGIT). Archives of Physiology and Biochemistry, 2016, 122, 266-280.	2.1	2
80	Development of the Metabolic Syndrome: Study Design and Baseline Data of the Lufthansa Prevention Study (LUPS), A Prospective Observational Cohort Survey. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 777-787.	1.2	2
81	Preparation of "Functional―Mitochondria: A Challenging Business. Methods in Molecular Biology, 2021, 2276, 31-39.	0.9	2
82	Sterol-regulatory element binding proteins (SREBPs): gene-regulatory target of statin action. , 2002, , 35-54.		2
83	Investigating the Adipose Tissue Secretome: A Protocol to Generate High-Quality Samples Appropriate for Comprehensive Proteomic Profiling. Methods in Molecular Biology, 2021, 2261, 421-431.	0.9	1
84	Hepatic energy metabolism in a family with a glucokinase gene mutation and dysglycemia. Diabetes Research and Clinical Practice, 2022, 185, 109779.	2.8	1