

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/774270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vascularized pulp regeneration via injecting simvastatin functionalized GelMA cryogel microspheres loaded with stem cells from human exfoliated deciduous teeth. Materials Today Bio, 2022, 13, 100209.	5.5	17
2	Bioinspired porous microspheres for sustained hypoxic exosomes release and vascularized bone regeneration. Bioactive Materials, 2022, 14, 377-388.	15.6	33
3	3D printing nanocomposites with enhanced mechanical property and excellent electromagnetic wave absorption capability via the introduction of ZIF-derivative modified carbon fibers. Composites Part B: Engineering, 2022, 233, 109658.	12.0	42
4	Improving bone regeneration with composites consisting of piezoelectric poly(l-lactide) and piezoelectric calcium/manganese co-doped barium titanate nanofibers. Composites Part B: Engineering, 2022, 234, 109734.	12.0	42
5	Construction of multifunctional cell aggregates in angiogenesis and osteogenesis through incorporating hVE-cad-Fc-modified PLGA/β-TCP microparticles for enhancing bone regeneration. Journal of Materials Chemistry B, 2022, 10, 3344-3356.	5.8	4
6	Polydopamine-coated polycaprolactone/carbon nanotube fibrous scaffolds loaded with brain-derived neurotrophic factor for peripheral nerve regeneration. Biofabrication, 2022, 14, 035006.	7.1	22
7	Hierarchical Therapeutic Ionâ€Based Microspheres with Precise Ratio ontrolled Delivery as Microscaffolds for In Situ Vascularized Bone Regeneration. Advanced Functional Materials, 2022, 32, .	14.9	25
8	ROS-Scavenging Electroactive Polyphosphazene-Based Core–Shell Nanofibers for Bone Regeneration. Advanced Fiber Materials, 2022, 4, 894-907.	16.1	21
9	Dental resin composites with improved antibacterial and mineralization properties via incorporating zinc/strontium-doped hydroxyapatite as functional fillers. Biomedical Materials (Bristol), 2022, 17, 045002.	3.3	12
10	Improving antibacterial performance of dental resin adhesive via co-incorporating fluoride and quaternary ammonium. Journal of Dentistry, 2022, 122, 104156.	4.1	2
11	Mimicking osteochondral interface using pre-differentiated BMSCs/fibrous mesh complexes to promote tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 2081-2103.	3.5	2
12	Osteoconductive and osteoinductive biodegradable microspheres serving as injectable micro-scaffolds for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 229-247.	3.5	7
13	Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomaterials Science, 2021, 9, 1547-1573.	5.4	17
14	Roles of oxygen level and hypoxia-inducible factor signaling pathway in cartilage, bone and osteochondral tissue engineering. Biomedical Materials (Bristol), 2021, 16, 022006.	3.3	15
15	Injectable GelMA Cryogel Microspheres for Modularized Cell Delivery and Potential Vascularized Bone Regeneration. Small, 2021, 17, e2006596.	10.0	91
16	Antibacterial, conductive, and osteocompatible polyorganophosphazene microscaffolds for the repair of infectious calvarial defect. Journal of Biomedical Materials Research - Part A, 2021, 109, 2580-2596.	4.0	12
17	Bioceramic fibrous scaffolds built with calcium silicate/hydroxyapatite nanofibers showing advantages for bone regeneration. Ceramics International, 2021, 47, 18920-18930.	4.8	22
18	In situ characterization on macroscale 3D spatial dispersion of MWCNTs in matrix and interfacial phases of quartz fibers/epoxy composites via fluorescence imaging. Journal of Materials Science, 2021, 56, 16399-16421.	3.7	2

#	Article	IF	CITATIONS
19	Composites made of polyorganophosphazene and carbon nanotube up-regulating osteogenic activity of BMSCs under electrical stimulation. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111785.	5.0	10
20	Controlled co-delivery system of magnesium and lanthanum ions for vascularized bone regeneration. Biomedical Materials (Bristol), 2021, 16, 065024.	3.3	14
21	Coaxially electrospun 5-fluorouracil-loaded PLGA/PVP fibrous membrane for skin tumor treatment. Biomedical Materials (Bristol), 2021, 16, 065014.	3.3	3
22	Gradient fibrous aerogel conjugated with chemokine peptide for regulating cell differentiation and facilitating osteochondral regeneration. Chemical Engineering Journal, 2021, 422, 130428.	12.7	12
23	Piezoelectric calcium/manganese-doped barium titanate nanofibers with improved osteogenic activity. Ceramics International, 2021, 47, 28778-28789.	4.8	23
24	Composite resin reinforced with fluorescent europium-doped hydroxyapatite nanowires for in-situ characterization. Dental Materials, 2020, 36, e15-e26.	3.5	7
25	Tracing Carbon Nanotubes (CNTs) in Rat Peripheral Nerve Regenerated with Conductive Conduits Composed of Poly(lactide- <i>co</i> -glycolide) and Fluorescent CNTs. ACS Biomaterials Science and Engineering, 2020, 6, 6344-6355.	5.2	12
26	lonic Liquid-Graphene Oxide for Strengthening Microwave Curing Epoxy Composites. ACS Applied Nano Materials, 2020, 3, 11955-11969.	5.0	9
27	Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. Journal of Materials Chemistry B, 2020, 8, 10221-10256.	5.8	53
28	Efficient regeneration of rat calvarial defect with gelatin-hydroxyapatite composite cryogel. Biomedical Materials (Bristol), 2020, 15, 065005.	3.3	19
29	Biodegradable microspheres made of conductive polyorganophosphazene showing antioxidant capacity for improved bone regeneration. Chemical Engineering Journal, 2020, 397, 125352.	12.7	29
30	Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding. Biomedical Materials (Bristol), 2020, 15, 035012.	3.3	14
31	Multiple nanosecond pulsed electric fields stimulation with conductive poly(<scp> </scp> â€lactic) Tj ETQq1 1 prolonged in vitro culture. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14,	0.784314 2.7	rgBT /Overloc 6
32	Macroporous scaffolds developed from CaSiO3 nanofibers regulating bone regeneration via controlled calcination. Materials Science and Engineering C, 2020, 113, 111005.	7.3	19
33	Degradation behaviors of three-dimensional hydroxyapatite fibrous scaffolds stabilized by different biodegradable polymers. Ceramics International, 2020, 46, 14124-14133.	4.8	14
34	Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Composites Part B: Engineering, 2020, 190, 107937.	12.0	85
35	Synthetic/natural blended polymer fibrous meshes composed of polylactide, gelatin and glycosaminoglycan for cartilage repair. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1437-1456.	3.5	14
36	Chemical Grafting-derived N, P Co-doped Hollow Microporous Carbon Spheres for High-Performance Sodium-ion Battery Anodes. Applied Surface Science, 2020, 518, 146221.	6.1	41

#	Article	IF	CITATIONS
37	Dualâ€Controlled Release of Icariin/Mg ²⁺ from Biodegradable Microspheres and Their Synergistic Upregulation Effect on Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e2000211.	7.6	47
38	Photoluminescent biodegradable polyorganophosphazene: A promising scaffold material for in vivo application to promote bone regeneration. Bioactive Materials, 2020, 5, 102-109.	15.6	13
39	Vancomycin- and Strontium-Loaded Microspheres with Multifunctional Activities against Bacteria, in Angiogenesis, and in Osteogenesis for Enhancing Infected Bone Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 30596-30609.	8.0	74
40	Regenerating infected bone defects with osteocompatible microspheres possessing antibacterial activity. Biomaterials Science, 2019, 7, 272-286.	5.4	22
41	Formation of core-shell structured calcium silicate fiber via sol-gel electrospinning and controlled calcination. Ceramics International, 2019, 45, 23975-23983.	4.8	20
42	Design and synthesis of a fluorescent amino poly(glycidyl methacrylate) for efficient gene delivery. Journal of Materials Chemistry B, 2019, 7, 1875-1881.	5.8	5
43	Enhancing overall properties of epoxy-based composites using polydopamine-coated edge-carboxylated graphene prepared via one-step high-pressure ball milling. Physical Chemistry Chemical Physics, 2019, 21, 21726-21737.	2.8	5
44	Comprehensive enhancement in overall properties of MWCNTs-COOH/epoxy composites by microwave: An efficient approach to strengthen interfacial bonding via localized superheating effect. Composites Part B: Engineering, 2019, 174, 106909.	12.0	19
45	Molecular Mechanism Study on Effect of Biodegradable Amino Acid Ester–Substituted Polyphosphazenes in Stimulating Osteogenic Differentiation. Macromolecular Bioscience, 2019, 19, 1800464.	4.1	10
46	Carbon nanomaterials for implant dentistry and bone tissue engineering. , 2019, , 429-468.		5
47	Pore size effect on adsorption and release of metoprolol tartrate in mesoporous silica: Experimental and molecular simulation studies. Materials Science and Engineering C, 2019, 100, 789-797.	7.3	14
48	Synergistic effect of stem cells from human exfoliated deciduous teeth and rhBMP-2 delivered by injectable nanofibrous microspheres with different surface modifications on vascularized bone regeneration. Chemical Engineering Journal, 2019, 370, 573-586.	12.7	19
49	Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. Biomedical Materials (Bristol), 2019, 14, 045001.	3.3	41
50	Promoting osteogenic differentiation of BMSCs via mineralization of polylactide/gelatin composite fibers in cell culture medium. Materials Science and Engineering C, 2019, 100, 862-873.	7.3	14
51	Strengthening the potential of biomineralized microspheres in enhancing osteogenesis via incorporating alendronate. Chemical Engineering Journal, 2019, 368, 577-588.	12.7	37
52	Roles of electrical stimulation in promoting osteogenic differentiation of BMSCs on conductive fibers. Journal of Biomedical Materials Research - Part A, 2019, 107, 1443-1454.	4.0	35
53	Osteochondral tissue regenerated via a strategy by stacking pre-differentiated BMSC sheet on fibrous mesh in a gradient. Biomedical Materials (Bristol), 2019, 14, 065017.	3.3	19
54	Strengthening the Shape Memory Behaviors of <scp>l</scp> -Lactide-ased Copolymers via Its Stereocomplexation Effect with Poly(<scp>d</scp> -Lactide). Industrial & Engineering Chemistry Research, 2019, 58, 22021-22031.	3.7	7

Qing Cai

#	Article	IF	CITATIONS
55	Study of Electrical Stimulation with Different Electric-Field Intensities in the Regulation of the Differentiation of PC12 Cells. ACS Chemical Neuroscience, 2019, 10, 348-357.	3.5	46
56	Promoting neural transdifferentiation of BMSCs via applying synergetic multiple factors for nerve regeneration. Experimental Cell Research, 2019, 375, 80-91.	2.6	16
57	Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomaterialia, 2019, 85, 294-309.	8.3	136
58	Effects of high hydrostatic pressure on structural and physical properties of nisin-SPI film. International Journal of Biological Macromolecules, 2018, 111, 976-982.	7.5	17
59	Using biomimetically mineralized collagen membranes with different surface stiffness to guide regeneration of bone defects. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1545-1555.	2.7	24
60	Constructing conductive conduit with conductive fibrous infilling for peripheral nerve regeneration. Chemical Engineering Journal, 2018, 345, 566-577.	12.7	63
61	Inter-brain synchrony and cooperation context in interactive decision making. Biological Psychology, 2018, 133, 54-62.	2.2	103
62	Poly(L-lactide) nanocomposites containing poly(D-lactide) grafted nanohydroxyapatite with improved interfacial adhesion via stereocomplexation. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 10-19.	3.1	20
63	Directing osteogenic differentiation of BMSCs by cell-secreted decellularized extracellular matrixes from different cell types. Journal of Materials Chemistry B, 2018, 6, 7471-7485.	5.8	19
64	Injectable polyphosphazene/gelatin hybrid hydrogel for biomedical applications. Materials and Design, 2018, 160, 1137-1147.	7.0	28
65	Multiwalled Carbon nanotubes/hydroxyapatite nanoparticles incorporated GTR membranes. , 2018, , 181-209.		1
66	Bioresorbable Microspheres with Surfaceâ€Loaded Nanosilver and Apatite as Dualâ€Functional Injectable Cell Carriers for Bone Regeneration. Macromolecular Rapid Communications, 2018, 39, e1800062.	3.9	26
67	Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers. Acta Biomaterialia, 2017, 50, 361-369.	8.3	45
68	Paracingulate Sulcus Asymmetry in the Human Brain: Effects of Sex, Handedness, and Race. Scientific Reports, 2017, 7, 42033.	3.3	20
69	Effects of Ca/P molar ratios on regulating biological functions of hybridized carbon nanofibers containing bioactive glass nanoparticles. Biomedical Materials (Bristol), 2017, 12, 025019.	3.3	10
70	Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh. Biofabrication, 2017, 9, 025036.	7.1	41
71	Nanoporous fibers built with carbon-bound SiO 2 nanospheres via electrospinning and calcination. Materials and Design, 2017, 130, 231-238.	7.0	23
72	Correlating cytotoxicity to elution behaviors of composite resins in term of curing kinetic. Materials Science and Engineering C, 2017, 78, 413-419.	7.3	8

#	Article	IF	CITATIONS
73	Timeâ€dependent effect of electrical stimulation on osteogenic differentiation of bone mesenchymal stromal cells cultured on conductive nanofibers. Journal of Biomedical Materials Research - Part A, 2017, 105, 3369-3383.	4.0	46
74	Photoluminescent polyphosphazene nanoparticles for <i>in situ</i> simvastatin delivery for improving the osteocompatibility of BMSCs. Journal of Materials Chemistry B, 2017, 5, 9300-9311.	5.8	10
75	Composite resin reinforced with silver nanoparticles–laden hydroxyapatite nanowires for dental application. Dental Materials, 2017, 33, 12-22.	3.5	89
76	Synthesis and characterization of polyphosphazene microspheres incorporating demineralized bone matrix scaffolds controlled release of growth factor for chondrogenesis applications. Oncotarget, 2017, 8, 114314-114327.	1.8	8
77	Regulating proliferation and differentiation of osteoblasts on poly(<scp>l</scp> -lactide)/gelatin composite nanofibers via timed biomineralization. Journal of Biomedical Materials Research - Part A, 2016, 104, 1968-1980.	4.0	20
78	Cell studies of hybridized carbon nanofibers containing bioactive glass nanoparticles using bone mesenchymal stromal cells. Scientific Reports, 2016, 6, 38685.	3.3	16
79	Gold nanoparticle-conjugated heterogeneous polymer brush-wrapped cellulose nanocrystals prepared by combining different controllable polymerization techniques for theranostic applications. Polymer Chemistry, 2016, 7, 3107-3116.	3.9	62
80	Direct fabrication of hybrid nanofibres composed of SiO2-PMMA nanospheres via electrospinning. Colloids and Surfaces B: Biointerfaces, 2016, 144, 238-249.	5.0	15
81	Effectively Exerting the Reinforcement of Dopamine Reduced Graphene Oxide on Epoxy-Based Composites via Strengthened Interfacial Bonding. ACS Applied Materials & Interfaces, 2016, 8, 13037-13050.	8.0	134
82	Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme. Scientific Reports, 2016, 6, 36408.	3.3	30
83	Dual functional polylactide–hydroxyapatite nanocomposites for bone regeneration with nano-silver being loaded via reductive polydopamine. RSC Advances, 2016, 6, 91349-91360.	3.6	13
84	Synthesis and Fluorescent Property of Biodegradable Polyphosphazene Targeting Long-Term <i>in Vivo</i> Tracking. Macromolecules, 2016, 49, 8508-8519.	4.8	16
85	Enhancing the biological properties of carbon nanofibers by controlling the crystallization of incorporated bioactive glass via silicon content. RSC Advances, 2016, 6, 53958-53966.	3.6	5
86	Thermal-based regulation on biomineralization and biological properties of bioglass nanoparticles decorated PAN-based carbon nanofibers. RSC Advances, 2016, 6, 428-438.	3.6	4
87	Improving interfacial adhesion with epoxy matrix using hybridized carbon nanofibers containing calcium phosphate nanoparticles for bone repairing. Materials Science and Engineering C, 2016, 61, 174-179.	7.3	16
88	Regulating micro-structure and biomineralization of electrospun PVP-based hybridized carbon nanofibers containing bioglass nanoparticles via aging time. RSC Advances, 2016, 6, 3870-3881.	3.6	17
89	Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating. Materials Science and Engineering C, 2016, 58, 742-749.	7.3	46
90	Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO 2 nanofiber fillers. Materials Science and Engineering C, 2016, 59, 464-470.	7.3	56

#	Article	IF	CITATIONS
91	Highly moisture-resistant epoxy composites: an approach based on liquid nano-reinforcement containing well-dispersed activated montmorillonite. RSC Advances, 2015, 5, 44853-44864.	3.6	11
92	Visualization of <i>in vivo</i> degradation of aliphatic polyesters by a fluorescent dendritic star macromolecule. Biomedical Materials (Bristol), 2015, 10, 065003.	3.3	7
93	A series of new supramolecular polycations for effective gene transfection. Polymer Chemistry, 2015, 6, 2466-2477.	3.9	15
94	Numerical Characterization of Magnetically Aligned Multiwalled Carbon Nanotube–Fe ₃ O ₄ Nanoparticle Complex. ACS Applied Materials & Interfaces, 2015, 7, 3170-3179.	8.0	39
95	Nanoporous structured carbon nanofiber–bioactive glass composites for skeletal tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 5300-5309.	5.8	19
96	Mineralization on polylactide/gelatin composite nanofibers using simulated body fluid containing amino acid. Applied Surface Science, 2015, 349, 538-548.	6.1	25
97	In vitro and in vivo drug release behavior and osteogenic potential of a composite scaffold based on poly(ε-caprolactone)-block-poly(lactic-co-glycolic acid) and β-tricalcium phosphate. Journal of Materials Chemistry B, 2015, 3, 6885-6896.	5.8	17
98	PLGA/PDLLA core–shell submicron spheres sequential release system: Preparation, characterization and promotion of bone regeneration in vitro and in vivo. Chemical Engineering Journal, 2015, 273, 490-501.	12.7	35
99	What can atypical language hemispheric specialization tell us about cognitive functions?. Neuroscience Bulletin, 2015, 31, 220-226.	2.9	16
100	Polylactide–hydroxyapatite nanocomposites with highly improved interfacial adhesion via mussel-inspired polydopamine surface modification. RSC Advances, 2015, 5, 95631-95642.	3.6	22
101	Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time. Colloids and Surfaces B: Biointerfaces, 2015, 136, 585-593.	5.0	14
102	Enhanced osteogenic differentiation of mesenchymal stem cells on poly(<scp>l</scp> -lactide) nanofibrous scaffolds containing carbon nanomaterials. Journal of Biomedical Materials Research - Part A, 2015, 103, 1424-1435.	4.0	77
103	Electrospun biodegradable polyorganophosphazene fibrous matrix with poly(dopamine) coating for bone regeneration. Journal of Biomedical Materials Research - Part A, 2014, 102, 3894-3902.	4.0	32
104	Improving the miscibility of biodegradable polyester/polyphosphazene blends using cross-linkable polyphosphazene. Biomedical Materials (Bristol), 2014, 9, 061001.	3.3	5
105	Growth mechanism of bioglass nanoparticles in polyacrylonitrile-based carbon nanofibers. RSC Advances, 2014, 4, 64299-64309.	3.6	12
106	NaF-loaded core–shell PAN–PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins. Materials Science and Engineering C, 2014, 34, 262-269.	7.3	23
107	pH-sensitive unimolecular fluorescent polymeric micelles: from volume phase transition to optical response. Chemical Communications, 2014, 50, 823-825.	4.1	36
108	Biomineralization on polymer-coated multi-walled carbon nanotubes with different surface functional groups. Colloids and Surfaces B: Biointerfaces, 2014, 123, 753-761.	5.0	33

Qing Cai

#	Article	IF	CITATIONS
109	Improved bioactivity of PAN-based carbon nanofibers decorated with bioglass nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 341-353.	3.5	18
110	Synthesis of iodine-containing cyclophosphazenes for using as radiopacifiers in dental composite resin. Materials Science and Engineering C, 2014, 43, 432-438.	7.3	14
111	Perylene-cored Star-shaped Polycations for Fluorescent Gene Vectors and Bioimaging. ACS Applied Materials & Interfaces, 2014, 6, 16327-16334.	8.0	58
112	Macroporous and nanofibrous PLLA scaffolds reinforced with calcium phosphate-coated multiwalled carbon nanotubes. Materials Letters, 2014, 128, 238-241.	2.6	16
113	Osteocompatibility evaluation of poly(glycine ethyl esterâ€ <i>co</i> â€alanine ethyl ester)phosphazene with honeycombâ€patterned surface topography. Journal of Biomedical Materials Research - Part A, 2013, 101A, 307-317.	4.0	33
114	Effect of surface modification of fiber post using dopamine polymerization on interfacial adhesion with core resin. Applied Surface Science, 2013, 274, 248-254.	6.1	31
115	Electrospun magnetic poly(l-lactide) (PLLA) nanofibers by incorporating PLLA-stabilized Fe3O4 nanoparticles. Materials Science and Engineering C, 2013, 33, 3498-3505.	7.3	52
116	Preparation of biomimetic hydroxyapatite by biomineralization and calcination using poly(l-lactide)/gelatin composite fibrous mat as template. Materials Letters, 2013, 91, 275-278.	2.6	24
117	Controlled release behaviour of protein-loaded microparticles prepared via coaxial or emulsion electrospray. Journal of Microencapsulation, 2013, 30, 490-497.	2.8	38
118	Dose-dependent enhancement of bone marrow stromal cells adhesion, spreading and osteogenic differentiation on atmospheric plasma-treated poly(<scp>l</scp> -lactic acid) nanofibers. Journal of Bioactive and Compatible Polymers, 2013, 28, 453-467.	2.1	11
119	Hydroxyapatite–poly(l-lactide) nanohybrids via surface-initiated ATRP for improving bone-like apatite-formation abilities. Applied Surface Science, 2012, 258, 6823-6830.	6.1	29
120	Macroporous and nanofibrous poly(lactide-co-glycolide)(50/50) scaffolds via phase separation combined with particle-leaching. Materials Science and Engineering C, 2012, 32, 1407-1414.	7.3	28
121	Synthesis of periodic copolymers via ringâ€opening copolymerizations of cyclic anhydrides with tetrahydrofuran using nonafluorobutanesulfonimide as an organic catalyst and subsequent transformation to aliphatic polyesters. Journal of Polymer Science Part A, 2012, 50, 3171-3183.	2.3	17
122	Calcium ion release and osteoblastic behavior of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning. Materials Letters, 2012, 73, 172-175.	2.6	27
123	Biomineralization of electrospun poly(l-lactic acid)/gelatin composite fibrous scaffold by using a supersaturated simulated body fluid with continuous CO2 bubbling. Applied Surface Science, 2011, 257, 10109-10118.	6.1	64
124	Nanofibrosis of uncrystallizable poly(lactideâ€ <i>co</i> â€glycolide) via phase separation. Polymers for Advanced Technologies, 2011, 22, 1078-1082.	3.2	4
125	Preparation of amino acid ester substituted polyphosphazene microparticles via electrohydrodynamic atomization. Polymers for Advanced Technologies, 2011, 22, 2009-2016.	3.2	17
126	Structure and wettability relationship of coelectrospun poly (Lâ€lactic acid)/gelatin composite fibrous mats. Polymers for Advanced Technologies, 2011, 22, 2222-2230.	3.2	26

#	Article	IF	CITATIONS
127	Phase separation of polyphosphazene/poly(lactideâ€ <i>co</i> â€glycolide) blends prepared under different conditions. Polymers for Advanced Technologies, 2011, 22, 2448-2457.	3.2	5
128	The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 600-609.	3.1	86
129	Investigation of the effects of the retention groove location and dimensions of threaded glass fiber post on biomechanical responses of the restorative system. , 2011, , .		0
130	β-tricalcium phosphate nanoparticles adhered carbon nanofibrous membrane for human osteoblasts cell culture. Materials Letters, 2010, 64, 725-728.	2.6	26
131	Post-draw PAN–PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite. Dental Materials, 2010, 26, 873-880.	3.5	77
132	Effect of solvent on surface wettability of electrospun polyphosphazene nanofibers. Journal of Applied Polymer Science, 2010, 115, 3393-3400.	2.6	21
133	The biological properties of carbon nanofibers decorated with β-tricalcium phosphate nanoparticles. Carbon, 2010, 48, 2266-2272.	10.3	27
134	Coâ€electrospun composite nanofibers of blends of poly[(amino acid ester)phosphazene] and gelatin. Polymer International, 2010, 59, 610-616.	3.1	14
135	Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation. Composites Science and Technology, 2008, 68, 3322-3329.	7.8	122
136	Prenatal stress on the kinetic properties of Ca2+ and K+ channels in offspring hippocampal CA3 pyramidal neurons. Life Sciences, 2007, 80, 681-689.	4.3	21
137	Phosphazene cyclomatrix network polymers: Some aspects of the synthesis, characterization, and flame-retardant mechanisms of polymer. Journal of Applied Polymer Science, 2005, 95, 880-889.	2.6	45
138	Nucleophilic cosubstitution of poly(dichlorophosphazene) with alkyl ether and amino acid ester. Journal of Polymer Science Part A, 2005, 43, 2417-2425.	2.3	3
139	Formation of ordered microporous films with water as templates from poly(D,L-lactic-co-glycolic) Tj ETQq1 1 0.7	84314 rgB 2.6	T /Overlock
140	Enzymatic degradation behavior and mechanism of Poly(lactide-co-glycolide) foams by trypsin. Biomaterials, 2003, 24, 629-638.	11.4	150
141	Synthesis and characterization of biodegradable polylactide-grafted dextran and its application as compatilizer. Biomaterials, 2003, 24, 3555-3562.	11.4	77
142	Enhancing the cell affinity of macroporous poly(L-lactide) cell scaffold by a convenient surface modification method. Polymer International, 2003, 52, 1892-1899.	3.1	98
143	Morphology and levonorgestrel release behavior of polycaprolactone/ poly(ethylene?oxide)/Polylactide tri-component copolymeric microspheres. Polymers for Advanced Technologies, 2003, 14, 239-244.	3.2	21
144	The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solid-liquid phase separation. Polymers for Advanced Technologies, 2003, 14, 565-573.	3.2	93

Qing Cai

#	Article	IF	CITATIONS
145	Synthesis and Properties of Star-Shaped Polylactide Attached to Poly(Amidoamine) Dendrimer. Biomacromolecules, 2003, 4, 828-834.	5.4	145
146	An important biodegradable polymer – polylactone-family polymer. Macromolecular Symposia, 2003, 195, 263-268.	0.7	20
147	Relationship among drug delivery behavior, degradation behavior and morphology of copolylactones derived from glycolide,l-lactide and ?-caprolactone. Polymers for Advanced Technologies, 2002, 13, 105-111.	3.2	24
148	Fabrication and biocompatibility of cell scaffolds of poly(L-lactic acid) and poly(L-lactic-co-glycolic) Tj ETQq0 0 0 r	gBT /Over 3.2	lock 10 Tf 50
149	In vitro study on the drug release behavior from Polylactide-based blend matrices. Polymers for Advanced Technologies, 2002, 13, 534-540.	3.2	38
150	Relationship between morphology structure and composition of polycaprolactone/Poly(ethylene) Tj ETQq0 0 0 rg	BŢ lOverla	ock 10 Tf 50 ! 12
151	Synthesis and properties of ABA-type triblock copolymers of poly(glycolide- co -caprolactone) (A) and poly(ethylene glycol) (B). Polymer, 2002, 43, 3585-3591.	3.8	28
152	A novel porous cells scaffold made of polylactide–dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials, 2002, 23, 4483-4492.	11.4	169
153	Biodegradation behaviour of poly(lactide-co-glycolide) induced by microorganisms. Polymer Degradation and Stability, 2001, 71, 243-251.	5.8	38
154	Degradation and 5-fluorouracil release behavior in vitro of polycaprolactone/poly(ethylene) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf 50 382 Td

155	Synthesis and characterization of polycaprolactone (B)-poly(lactide-co-glycolide) (A) ABA block copolymer. Polymers for Advanced Technologies, 2000, 11, 159-166.	3.2	26
156	Synthesis and degradation of a tri-component copolymer derived from glycolide, L-lactide, and ε-caprolactone. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 273-288.	3.5	67