
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7742616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inundaciones y cambio climático: certezas e incertidumbres en el camino a la adaptación. Cuadernos De GeografÃa De La Universitat De València, 2022, , 191.	0.0	1
2	Evaluation of Sentinel-1, SMAP and SMOS surface soil moisture products for distributed eco-hydrological modelling in Mediterranean forest basins. Journal of Hydrology, 2022, 608, 127569.	5.4	6
3	Impact of a transformation from flood to drip irrigation on groundwater recharge and nitrogen leaching under variable climatic conditions. Science of the Total Environment, 2022, 825, 153805.	8.0	14
4	COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 2022, 14, 1125-1151.	9.9	33
5	Towards an Extension of the Model Conditional Processor: Predictive Uncertainty Quantification of Monthly Streamflow via Gaussian Mixture Models and Clusters. Water (Switzerland), 2022, 14, 1261.	2.7	3
6	Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain). Agricultural Systems, 2021, 188, 103029.	6.1	21
7	From Flood to Drip Irrigation Under Climate Change: Impacts on Evapotranspiration and Groundwater Recharge in the Mediterranean Region of Valencia (Spain). Earth's Future, 2021, 9, e2020EF001859.	6.3	21
8	Assessing the risk of vehicle instability due to flooding. Journal of Flood Risk Management, 2021, 14, e12738.	3.3	8
9	Determining the vehicle instability risk in stream crossings. Journal of Flood Risk Management, 2021, 14, e12737.	3.3	3
10	Hydrological Modeling of the Effect of the Transition From Flood to Drip Irrigation on Groundwater Recharge Using Multiâ€Objective Calibration. Water Resources Research, 2021, 57, e2021WR029677.	4.2	11
11	A process-based flood frequency analysis within a trivariate statistical framework. Application to a semi-arid Mediterranean case study. Journal of Hydrology, 2021, 603, 127081.	5.4	5
12	Review and analysis of vehicle stability models during floods and proposal for future improvements. Journal of Flood Risk Management, 2020, 13, .	3.3	23
13	New Approach to Estimate Extreme Flooding Using Continuous Synthetic Simulation Supported by Regional Precipitation and Non-Systematic Flood Data. Water (Switzerland), 2020, 12, 3174.	2.7	13
14	PMP and Climate Variability and Change: A Review. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	1.9	20
15	Assessing Anthropogenic Dynamics in Megacities from the Characterization of Land Use/Land Cover Changes: The BogotA _i Study Case. Sustainability, 2020, 12, 3884.	3.2	3
16	An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources. Water (Switzerland), 2020, 12, 1495.	2.7	12
17	Streamflow Variability in Colombian Pacific Basins and Their Teleconnections with Climate Indices. Water (Switzerland), 2020, 12, 526.	2.7	24
18	Improving the modelling and understanding of carbon-nitrogen-water interactions in a semiarid Mediterranean oak forest. Ecological Modelling, 2020, 420, 108976.	2.5	1

#	Article	IF	CITATIONS
19	Streamflow Intensification Driven by the Atlantic Multidecadal Oscillation (AMO) in the Atrato River Basin, Northwestern Colombia. Water (Switzerland), 2020, 12, 216.	2.7	15
20	Modelación no estacionaria de la magnitud y frecuencia de las crecidas en el Alto Cauca mediante Ãndices climáticos y de operación de embalse. Tecnologia Y Ciencias Del Agua, 2020, 11, 27-77.	0.3	1
21	Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins. Water (Switzerland), 2019, 11, 1288.	2.7	2
22	How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: a case study using distributed modeling in the Upper Citarum watershed, Indonesia. Environmental Earth Sciences, 2019, 78, 1.	2.7	22
23	Hydrological post-processing based on approximate Bayesian computation (ABC). Stochastic Environmental Research and Risk Assessment, 2019, 33, 1361-1373.	4.0	4
24	Explaining the hydrological behaviour of facultative phreatophytes using a multi-variable and multi-objective modelling approach. Journal of Hydrology, 2019, 575, 395-407.	5.4	11
25	Managing low productive forests at catchment scale: Considering water, biomass and fire risk to achieve economic feasibility. Journal of Environmental Management, 2019, 231, 653-665.	7.8	11
26	Assessment of Remotely Sensed Near-Surface Soil Moisture for Distributed Eco-Hydrological Model Implementation. Water (Switzerland), 2019, 11, 2613.	2.7	3
27	MetodologÃa basada en generadores meteorológicos para la estimación de avenidas extremas. IngenierÃa Del Agua, 2019, 23, 259.	0.4	2
28	On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sensing, 2018, 10, 641.	4.0	433
29	Simulación hidrológica de los impactos potenciales del cambio climático en la cuenca hidrográfica del rÃo Aipe, en Huila, Colombia. Ribagua, 2018, 5, 63-78.	0.3	4
30	Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña. IngenierÃa Del Agua, 2018, 22, 125.	0.4	3
31	Exploring the key drivers of riparian woodland successional pathways across three European river reaches. Ecohydrology, 2017, 10, e1888.	2.4	41
32	Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI. Hydrology and Earth System Sciences, 2017, 21, 6235-6251.	4.9	18
33	Ecohydrological-Based Forest Management in Semi-arid Climate. , 2017, , 45-57.		5
34	Análisis integral del impacto del Cambio Climático enlos regÃmenes de agua, crecidas y sedimentos de una rambla mediterránea. IngenierÃa Del Agua, 2017, 21, 263.	0.4	2
35	Investigating the behaviour of a small Mediterranean catchment using three different hydrological models as hypotheses. Hydrological Processes, 2016, 30, 2050-2062.	2.6	6
36	Flow regulation increases food hain length through omnivory mechanisms in a Mediterranean river network. Freshwater Biology, 2016, 61, 1536-1549.	2.4	28

#	Article	IF	CITATIONS
37	Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale. Journal of Hydrology, 2016, 541, 1258-1272.	5.4	16
38	The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics. Ecohydrology, 2016, 9, 438-459.	2.4	45
39	Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-controlled environments?. Ecological Modelling, 2016, 324, 45-53.	2.5	27
40	La riada de Valencia de 1957: reconstrucción hidrológica y sedimentológica y análisis comparativo con la situación actual. IngenierÃa Del Agua, 2016, 20, 181.	0.4	1
41	Comparing two approaches for parsimonious vegetation modelling in semiarid regions using satellite data. Ecohydrology, 2015, 8, 1024-1036.	2.4	14
42	Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrology and Earth System Sciences, 2015, 19, 2561-2576.	4.9	96
43	Patterns of runoff and sediment production in response to land-use changes in an ungauged Mediterranean catchment. Journal of Hydrology, 2015, 531, 1054-1066.	5.4	33
44	Fate and Degradation of Emerging Contaminants in Rivers: Review of Existing Models. Handbook of Environmental Chemistry, 2015, , 159-193.	0.4	2
45	Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: model results and implications. Regional Environmental Change, 2015, 15, 505-515.	2.9	25
46	Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment. Journal of Soils and Sediments, 2014, 14, 1921-1937.	3.0	44
47	Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semiâ€arid environments. Ecohydrology, 2014, 7, 659-677.	2.4	10
48	Distributed sediment yield modelling: Importance of initial sediment conditions. Environmental Modelling and Software, 2014, 58, 58-70.	4.5	55
49	Introduction to Hydrology. , 2014, , 1-126.		7
50	Modeling the Evolution of Riparian Woodlands Facing Climate Change in Three European Rivers with Contrasting Flow Regimes. PLoS ONE, 2014, 9, e110200.	2.5	31
51	Hydrology and its role in water engineering. IngenierÃa Del Agua, 2014, 18, 1.	0.4	4
52	Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin. Journal of Hazardous Materials, 2013, 263, 207-213.	12.4	34
53	The distributed model intercomparison project – Phase 2: Experiment design and summary results of the western basin experiments. Journal of Hydrology, 2013, 507, 300-329.	5.4	38
54	Implementing a dynamic riparian vegetation model in three European river systems. Ecohydrology, 2013, 6, 635-651.	2.4	36

#	Article	IF	CITATIONS
55	Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrology and Earth System Sciences, 2013, 17, 3189-3203.	4.9	208
56	Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrology and Earth System Sciences, 2013, 17, 3339-3354.	4.9	70
57	A comparative analysis of the effectiveness of flood management measures based on the concept of "retaining water in the landscape" in different European hydro-climatic regions. Natural Hazards and Earth System Sciences, 2012, 12, 3287-3306.	3.6	66
58	Assessing and forecasting the impacts of global change on Mediterranean rivers. The SCARCE Consolider project on Iberian basins. Environmental Science and Pollution Research, 2012, 19, 918-933.	5.3	46
59	Does increased hydrochemical model complexity decrease robustness?. Journal of Hydrology, 2012, 440-441, 1-13.	5.4	21
60	Spatial scale effect on the upper soil effective parameters of a distributed hydrological model. Hydrological Processes, 2012, 26, 1022-1033.	2.6	28
61	High return period annual maximum reservoir water level quantiles estimation using synthetic generated flood events. , 2011, , 185-190.		6
62	Probable Maximum Flood estimation using upper bounded statistical models and its effect on high return period quantiles. , 2011, , 323-328.		0
63	Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment. Hydrology and Earth System Sciences, 2010, 14, 2057-2072.	4.9	42
64	Modelling the inorganic nitrogen behaviour in a small Mediterranean forested catchment, Fuirosos (Catalonia). Hydrology and Earth System Sciences, 2010, 14, 223-237.	4.9	10
65	Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models. Hydrology and Earth System Sciences, 2010, 14, 2617-2628.	4.9	40
66	Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrology and Earth System Sciences, 2009, 13, 229-246.	4.9	47
67	Modelling the nonâ€linear hydrological behaviour of a small Mediterranean forested catchment. Hydrological Processes, 2008, 22, 3814-3828.	2.6	35
68	A conceptual dynamic vegetation-soil model for arid and semiarid zones. Hydrology and Earth System Sciences, 2008, 12, 1175-1187.	4.9	25
69	Hydrological modelling of the "Sierra de las Minas―in Guatemala, by using a conceptual distributed model and considering the lack of data. WIT Transactions on the Built Environment, 2008, , .	0.0	3
70	Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 2007, 332, 226-240.	5.4	124
71	Flood Frequency Analysis for Extreme Events. , 2007, , 123-137.		1
72	Use of Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation. Review of Scientific Methods. Natural Hazards, 2004, 31, 623-643.	3.4	234

#	Article	IF	CITATIONS
73	Incorporating Non-Systematic Information to Flood Frequency Analysis Using the Maximum Likelihood Estimation Method. Advances in Natural and Technological Hazards Research, 2001, , 89-99.	1.1	7
74	Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis. Stochastic Hydrology & Hydraulics, 1998, 12, 267-283.	0.5	29
75	Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models. Water Resources Research, 1994, 30, 1653-1664.	4.2	102