
Andrew Chase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/774253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenic variants causing ABL1 malformation syndrome cluster in a myristoyl-binding pocket and increase tyrosine kinase activity. European Journal of Human Genetics, 2021, 29, 593-603.	1.4	7
2	EZH2 in Myeloid Malignancies. Cells, 2020, 9, 1639.	1.8	37
3	Mutational mechanisms of EZH2 inactivation in myeloid neoplasms. Leukemia, 2020, 34, 3206-3214.	3.3	8
4	Recurrent activating STAT5B N642H mutation in myeloid neoplasms with eosinophilia. Leukemia, 2019, 33, 415-425.	3.3	65
5	PRR14L mutations are associated with chromosome 22 acquired uniparental disomy, age-related clonal hematopoiesis and myeloid neoplasia. Leukemia, 2019, 33, 1184-1194.	3.3	11
6	A Novel PCM1-PDGFRB Fusion in a Patient with a Chronic Myeloproliferative Neoplasm and an ins(8;5). Acta Haematologica, 2017, 138, 198-200.	0.7	5
7	Limited duration of complete remission on ruxolitinib in myeloid neoplasms with PCM1-JAK2 and BCR-JAK2 fusion genes. Annals of Hematology, 2015, 94, 233-238.	0.8	74
8	Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nature Communications, 2015, 6, 6691.	5.8	145
9	Evaluation of methods to detect CALR mutations in myeloproliferative neoplasms. Leukemia Research, 2015, 39, 82-87.	0.4	55
10	Ponatinib as targeted therapy for FGFR1 fusions associated with the 8p11 myeloproliferative syndrome. Haematologica, 2013, 98, 103-106.	1.7	70
11	Ruxolitinib as potential targeted therapy for patients with JAK2 rearrangements. Haematologica, 2013, 98, 404-408.	1.7	35
12	Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood, 2012, 119, 1208-1213.	0.6	162
13	Aberrations of <i>EZH2</i> in Cancer. Clinical Cancer Research, 2011, 17, 2613-2618.	3.2	503
14	TFG, a target of chromosome translocations in lymphoma and soft tissue tumors, fuses to GPR128 in healthy individuals. Haematologica, 2010, 95, 20-26.	1.7	63
15	Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms. Haematologica, 2010, 95, 1473-1480.	1.7	67
16	A polymorphism associated with STAT3 expression and response of chronic myeloid leukemia to interferon Â. Haematologica, 2010, 95, 148-152.	1.7	29
17	Fusion of <i>PDGFRB</i> to two distinct loci at 3p21 and a third at 12q13 in imatinibâ€responsive myeloproliferative neoplasms. British Journal of Haematology, 2010, 148, 268-273.	1.2	17
18	Imatinib sensitivity as a consequence of a CSF1R-Y571D mutation and CSF1/CSF1R signaling abnormalities in the cell line GDM1. Leukemia, 2009, 23, 358-364.	3.3	13

ANDREW CHASE

#	Article	IF	CITATIONS
19	The JAK2 46/1 Haplotype Predisposes to Myeloproliferative Neoplasms Characterized by Diverse Mutations Blood, 2009, 114, 433-433.	0.6	2
20	Frequent Inactivating Mutations of TET2 and CBL Are Associated with Acquired Uniparental Disomy in Atypical Chronic Myeloid Leukemia and Related Disorders Blood, 2009, 114, 3258-3258.	0.6	1
21	The t(1;9)(p34;q34) and t(8;12)(p11;q15) fuse preâ€mRNA processing proteins <i>SFPQ (PSF)</i> and <i>FGFR1</i> . Genes Chromosomes and Cancer, 2008, 47, 379-385.	1.5	55
22	Frequent CBL Mutations Associated with 11q Acquired Uniparental Disomy in Myeloproliferative Neoplasms. Blood, 2008, 112, 174-174.	0.6	1
23	Development of V617F JAK2 Associated Myeloproliferative Neoplasms Is a Non-Random Event That Is Strongly Dependent on JAK2 Haplotype. Blood, 2008, 112, 173-173.	0.6	Ο
24	Cytogenetically Cryptic Tyrosine Kinase Fusion Genes Are Rare in Atypical Myeloproliferative Neoplasms: An Analysis by Targeted Array Comparative Genomic Hybridization. Blood, 2008, 112, 2791-2791.	0.6	0
25	Durable responses to imatinib in patients with PDGFRB fusion gene–positive and BCR-ABL–negative chronic myeloproliferative disorders. Blood, 2007, 109, 61-64.	0.6	156
26	Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood, 2007, 110, 3729-3734.	0.6	91
27	Heterogeneous prognostic impact of derivative chromosome 9 deletions in chronic myelogenous leukemia. Blood, 2007, 110, 1283-1290.	0.6	72
28	A constitutively active SPTBN1-FLT3 fusion in atypical chronic myeloid leukemia is sensitive to tyrosine kinase inhibitors and immunotherapy. Experimental Hematology, 2007, 35, 1723-1727.	0.2	44
29	Signal transduction therapy in haematological malignancies: identification and targeting of tyrosine kinases. Clinical Science, 2006, 111, 233-249.	1.8	10
30	The t(8;9)(p22;p24) Is a Recurrent Abnormality in Chronic and Acute Leukemia that Fuses PCM1 to JAK2. Cancer Research, 2005, 65, 2662-2667.	0.4	269
31	SPTBN1-FLT3 in Atypical Chronic Myeloid Leukemia Transforms Ba/F3 Cells to IL-3 Independence and Is Sensitive to Both Tyrosine Kinase Inhibitors and Immunotherapy Blood, 2005, 106, 2009-2009.	0.6	0
32	Factors affecting duration of survival after onset of blastic transformation of chronic myeloid leukemia. Blood, 2002, 99, 2304-2309.	0.6	71
33	Cytogenetic and Molecular Monitoring of Residual Disease in Chronic Myeloid Leukaemia. Acta Haematologica, 2002, 107, 64-75.	0.7	69
34	Response to Imatinib Mesylate in Patients with Chronic Myeloproliferative Diseases with Rearrangements of the Platelet-Derived Growth Factor Receptor Beta. New England Journal of Medicine, 2002, 347, 481-487.	13.9	623
35	Cytogenetics of chronic myeloid leukaemia. Best Practice and Research in Clinical Haematology, 2001, 14, 553-571.	0.7	36
36	Identification of four new translocations involvingFGFR1 in myeloid disorders. Genes Chromosomes and Cancer, 2001, 32, 155-163.	1.5	91

3

ANDREW CHASE

#	Article	IF	CITATIONS
37	Non-random involvement of chromosome 13 in patients with persistent or relapsed disease after bone-marrow transplantation for chronic myeloid leukemia. , 2000, 27, 278-284.		10
38	A case of myelofibrosis with a t(4;13)(q25;q12): evidence for involvement of a second 13q12 locus in chronic myeloproliferative disorders. British Journal of Haematology, 1999, 105, 771-774.	1.2	7
39	Cloning and Characterization ofRNF6,a Novel RING Finger Gene Mapping to 13q12. Genomics, 1999, 58, 94-97.	1.3	20
40	Fusion of ETV6 to the Caudal-Related Homeobox Gene CDX2 in Acute Myeloid Leukemia With the t(12;13)(p13;q12). Blood, 1999, 93, 1025-1031.	0.6	7
41	Two cases of inv(8)(p11q13) in AML with erythrophagocytosis: a new cytogenetic variant. British Journal of Haematology, 1998, 100, 561-563.	1.2	35
42	Assignment of the Steroid Receptor Coactivator-1 (SRC-1) Gene to Human Chromosome Band 2p23. Genomics, 1998, 52, 242-244.	1.3	10
43	Consistent Fusion of ZNF198 to the Fibroblast Growth Factor Receptor-1 in the t(8;13)(p11;q12) Myeloproliferative Syndrome. Blood, 1998, 92, 1735-1742.	0.6	162
44	Consistent Fusion of ZNF198 to the Fibroblast Growth Factor Receptor-1 in the t(8;13)(p11;q12) Myeloproliferative Syndrome. Blood, 1998, 92, 1735-1742.	0.6	5
45	Abnormalities of Chromosome Band 8p11 in Leukemia: Two Clinical Syndromes Can Be Distinguished on the Basis of MOZ Involvement. Blood, 1997, 90, 3130-3135.	0.6	92
46	Bone marrow transplantation for chronic myeloid leukaemia: the effects of differing criteria for defining chronic phase on probabilities of survival and relapse. British Journal of Haematology, 1997, 99, 30-35.	1.2	56
47	Factors influencing the false positive and negative rates ofBCR-ABL fluorescence in situ hybridization. Genes Chromosomes and Cancer, 1997, 18, 246-253.	1.5	70
48	Characterization of a t(10;12)(q24;p13) in a case of CML in transformation. , 1997, 20, 408-411.		4
49	Factors influencing the false positive and negative rates of BCR-ABL fluorescence in situ hybridization. , 1997, 18, 246.		3
50	Characterization of a t(10;12)(q24;p13) in a case of CML in transformation. , 1997, 20, 408.		1
51	BCRâ€ABLâ€positive lymphoblastoid cells display limited proliferative capacity under in vitro culture conditions. British Journal of Haematology, 1996, 94, 654-658.	1.2	9
52	Correlation between the proportion of Philadelphia chromosome-positive metaphase cells and levels ofBCR-ABL mRNA in chronic myeloid leukaemia. Genes Chromosomes and Cancer, 1995, 13, 110-114.	1.5	22
53	Phenotypic Characterization of Normal and CML CD34–Positive Cells: Only the Most Primitive CML Progenitors Include Ph-neg Cells. Leukemia and Lymphoma, 1993, 11, 51-61.	0.6	2
54	Origin and function of adherent lymphokine activated killer cells in patients with chronic myeloid leukaemia who relapse following bone marrow transplantation. British Journal of Haematology, 1991, 77, 60-65.	1.2	10