Xiaodong Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7742212/publications.pdf

Version: 2024-02-01

159585 214800 6,384 47 30 47 citations h-index g-index papers 47 47 47 7516 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nature Communications, 2018, 9, 3239.	12.8	1,017
2	Twoâ€Inchâ€Sized Perovskite CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I) Crystals: Growth and Characterization. Advanced Materials, 2015, 27, 5176-5183.	21.0	914
3	Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy and Environmental Science, 2017, 10, 2095-2102.	30.8	588
4	Hysteresisâ€Suppressed Highâ€Efficiency Flexible Perovskite Solar Cells Using Solidâ€State Ionicâ€Liquids for Effective Electron Transport. Advanced Materials, 2016, 28, 5206-5213.	21.0	387
5	One-step hydrothermal synthesis of monolayer MoS ₂ quantum dots for highly efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 10693-10697.	10.3	320
6	20â€mmâ€Large Singleâ€Crystalline Formamidiniumâ€Perovskite Wafer for Mass Production of Integrated Photodetectors. Advanced Optical Materials, 2016, 4, 1829-1837.	7.3	316
7	Solution-Processed Nb:SnO ₂ Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Solar Cells.	8.0	315
8	Thinness―and Shapeâ€Controlled Growth for Ultrathin Singleâ€Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices. Advanced Materials, 2016, 28, 9204-9209.	21.0	296
9	Highâ€Efficiency Perovskite Solar Cells with Imidazoliumâ€Based Ionic Liquid for Surface Passivation and Charge Transport. Angewandte Chemie - International Edition, 2021, 60, 4238-4244.	13.8	221
10	Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale, 2016, 8, 3816-3822.	5.6	179
11	Tripleâ€Cation and Mixedâ€Halide Perovskite Single Crystal for Highâ€Performance Xâ€ray Imaging. Advanced Materials, 2021, 33, e2006010.	21.0	163
12	Highâ€Pressure Nitrogenâ€Extraction and Effective Passivation to Attain Highest Largeâ€Area Perovskite Solar Module Efficiency. Advanced Materials, 2020, 32, e2004979.	21.0	145
13	Antisolvent with an Ultrawide Processing Window for the Oneâ€Step Fabrication of Efficient and Largeâ€Area Perovskite Solar Cells. Advanced Materials, 2018, 30, e1802763.	21.0	130
14	40.1% Record Lowâ€Light Solarâ€Cell Efficiency by Holistic Trapâ€Passivation using Micrometerâ€Thick Perovskite Film. Advanced Materials, 2021, 33, e2100770.	21.0	110
15	120 mm single-crystalline perovskite and wafers: towards viable applications. Science China Chemistry, 2017, 60, 1367-1376.	8.2	107
16	Color-Tuned Perovskite Films Prepared for Efficient Solar Cell Applications. Journal of Physical Chemistry C, 2016, 120, 42-47.	3.1	106
17	Ionic Liquid Treatment for Highestâ€Efficiency Ambient Printed Stable Allâ€Inorganic CsPbl ₃ Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106750.	21.0	97
18	27%â€Efficiency Fourâ€Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh. Advanced Functional Materials, 2020, 30, 1908298.	14.9	91

#	Article	IF	Citations
19	Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Science Advances, 2021, 7, .	10.3	81
20	Stable High-Performance Flexible Photodetector Based on Upconversion Nanoparticles/Perovskite Microarrays Composite. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19176-19183.	8.0	70
21	Efficient perovskite solar cells <i>via</i> surface passivation by a multifunctional small organic ionic compound. Journal of Materials Chemistry A, 2020, 8, 8313-8322.	10.3	68
22	Large Leadâ€Free Perovskite Single Crystal for Highâ€Performance Coplanar Xâ€Ray Imaging Applications. Advanced Optical Materials, 2020, 8, 2000814.	7.3	67
23	Film Formation Control for High Performance Dion–Jacobson 2D Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002733.	19.5	62
24	Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation. Scientific Reports, 2016, 6, 35091.	3.3	60
25	Chlorineâ€modified SnO ₂ electron transport layer for highâ€efficiency perovskite solar cells. InformaÄnÃ-Materiály, 2020, 2, 401-408.	17. 3	48
26	Topology and texture controlled ZnO thin film electrodeposition for superior solar cell efficiency. Solar Energy Materials and Solar Cells, 2015, 134, 54-59.	6.2	40
27	Ligandâ€Anchoringâ€Induced Oriented Crystal Growth for Highâ€Efficiency Leadâ€Tin Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	38
28	Chemical Bath Deposition of Coâ€Doped TiO ₂ Electron Transport Layer for Hysteresisâ€Suppressed Highâ€Efficiency Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900176.	5.8	36
29	CO ₂ Plasma-Treated TiO ₂ Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33989-33996.	8.0	35
30	Solution Coating of Superior Largeâ€Area Flexible Perovskite Thin Films with Controlled Crystal Packing. Advanced Optical Materials, 2017, 5, 1700102.	7.3	34
31	Revisiting an important component of plant genomes: microsatellites. Functional Plant Biology, 2013, 40, 645.	2.1	29
32	Protonâ€transferâ€induced in situ defect passivation for highly efficient wideâ€bandgap inverted perovskite solar cells. InformaÄnÃ-Materiály, 2022, 4, .	17.3	27
33	Effective solvent-additive enhanced crystallization and coverage of absorber layers for high efficiency formamidinium perovskite solar cells. RSC Advances, 2016, 6, 56807-56811.	3.6	25
34	Deepâ€Level Transient Spectroscopy for Effective Passivator Selection in Perovskite Solar Cells to Attain High Efficiency over 23%. ChemSusChem, 2021, 14, 3182-3189.	6.8	24
35	Ag nanoparticle enhanced light trapping in hydrogenated amorphous silicon germanium solar cells on flexible stainless steel substrate. Solar Energy Materials and Solar Cells, 2016, 144, 63-67.	6.2	22
36	Highly Efficient and Stable CsPbTh ₃ (Th = I, Br, Cl) Perovskite Solar Cells by Combinational Passivation Strategy. Advanced Science, 2022, 9, e2105103.	11,2	20

#	Article	IF	CITATIONS
37	lonâ€Accumulationâ€Induced Charge Tunneling for High Gain Factor in P–l–Nâ€ 5 tructured Perovskite CH ₃ NH ₃ Pbl ₃ Xâ€Ray Detector. Advanced Materials Technologies, 2022, 7, 2100908.	5.8	15
38	Highâ€Efficiency Perovskite Solar Cells with Imidazoliumâ€Based Ionic Liquid for Surface Passivation and Charge Transport. Angewandte Chemie, 2021, 133, 4284-4290.	2.0	14
39	Superior texture-controlled ZnO thin film using electrochemical deposition. Solar Energy, 2016, 125, 192-197.	6.1	12
40	Highly stable and efficient perovskite solar cells produced via high-boiling point solvents and additive engineering synergistically. Science China Chemistry, 2020, 63, 818-826.	8.2	11
41	Ge quantum-dot enhanced c-Si solar cell for improved light trapping efficiency. Solar Energy, 2018, 167, 102-107.	6.1	10
42	Cd-Doped Triple-Cation Perovskite Thin Films with a 20 \hat{l} 4s Carrier Lifetime. Journal of Physical Chemistry C, 2020, 124, 22011-22018.	3.1	10
43	Effective surface passivation with 4-bromo-benzonitrile to enhance the performance of perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 17089-17098.	5.5	7
44	Ge quantum dot enhanced hydrogenated amorphous silicon germanium solar cells on flexible stainless steel substrate. Solar Energy, 2017, 144, 635-642.	6.1	6
45	Highâ€Performance Inverted Perovskite Solar Cells by Reducing Electron Capture Region for Electron Transport Layers. Solar Rrl, 2019, 3, 1900207.	5.8	6
46	Perovskite Wafers: Thinness―and Shapeâ€Controlled Growth for Ultrathin Singleâ€Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices (Adv. Mater. 41/2016). Advanced Materials, 2016, 28, 9203-9203.	21.0	3
47	Synergistically Enhanced Amplified Spontaneous Emission by Cd Doping and Clâ€Assisted Crystallization. Advanced Optical Materials, 2021, 9, 2001825.	7.3	2