José Ignacio Pérez-LandazÃ;bal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7742173/publications.pdf

Version: 2024-02-01

166 papers 2,688 citations

218592 26 h-index 276775 41 g-index

168 all docs 168
docs citations

168 times ranked 2076 citing authors

#	Article	IF	Citations
1	Correlation between atomic order and the characteristics of the structural and magnetic transformations in Ni–Mn–Ga shape memory alloys. Acta Materialia, 2007, 55, 3883-3889.	3.8	121
2	Dependence of the martensitic transformation and magnetic transition on the atomic order in Ni–Mn–In metamagnetic shape memory alloys. Acta Materialia, 2012, 60, 1937-1945.	3.8	83
3	Entropy change linked to the martensitic transformation in metamagnetic shape memory alloys. Acta Materialia, 2012, 60, 3168-3175.	3.8	83
4	Effect of a SiO ₂ coating on the magnetic properties of Fe ₃ O ₄ nanoparticles. Journal of Physics Condensed Matter, 2012, 24, 266007.	0.7	72
5	Entropy change linked to the magnetic field induced martensitic transformation in a Ni–Mn–In–Co shape memory alloy. Journal of Applied Physics, 2010, 107, .	1.1	69
6	Thermodynamics of thermally induced martensitic transformations in Cu–Al–Ni shape memory alloys. Acta Materialia, 2004, 52, 3941-3948.	3.8	65
7	Effect of high-temperature quenching on the magnetostructural transformations and the long-range atomic order of Ni–Mn–Sn and Ni–Mn–Sb metamagnetic shape memory alloys. Acta Materialia, 2013, 61, 4676-4682.	,3.8	61
8	Role of magnetism on the martensitic transformation in Ni–Mn-based magnetic shape memory alloys. Acta Materialia, 2012, 60, 459-468.	3.8	60
9	Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni–Mn–Ga thin films. Applied Physics Letters, 2009, 95, .	1.5	57
10	Ni Doped Fe ₃ O ₄ Magnetic Nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12, 2652-2660.	0.9	55
11	Effect of atomic order on the martensitic and magnetic transformations in Ni–Mn–Ga ferromagnetic shape memory alloys. Journal of Physics Condensed Matter, 2010, 22, 166001.	0.7	49
12	High temperature β phase decomposition process in a Cu–Al–Ni shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 238-242.	2.6	47
13	Magnetocaloric effect in Ni–Fe–Ga shape memory alloys. Applied Physics Letters, 2006, 88, 132503.	1.5	47
14	Determination of the next-nearest neighbor order in \hat{l}^2 phase in Cu-Al-Ni shape memory alloys. Applied Physics Letters, 2002, 81, 1794-1796.	1.5	46
15	Nanometric particle size and phase controlled synthesis and characterization of γ-Fe2O3 or (α + γ)-Fe2O by a modified sol-gel method. Journal of Applied Physics, 2013, 114, .	O3 1.1	46
16	Correlation between composition and phase transformation temperatures in Ni–Mn–Ga–Co ferromagnetic shape memory alloys. Acta Materialia, 2008, 56, 5370-5376.	3.8	45
17	High-temperature magnetic behavior of FeCo-based nanocrystalline alloys. Physical Review B, 2002, 66,	1.1	44
18	Sol-gel NiFe2O4 nanoparticles: Effect of the silica coating. Journal of Applied Physics, 2012, 111, .	1.1	43

#	Article	IF	CITATIONS
19	Study of the stability and decomposition process of the β phase in Cu–Al–Ni shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 734-737.	2.6	41
20	Study by resonant ultrasound spectroscopy of the elastic constants of the \hat{l}^2 phase in Cuî—¸Alî—¸Ni shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 488-491.	2.6	40
21	Magnetic field induced martensitic transformation linked to the arrested austenite in a Ni-Mn-In-Co shape memory alloy. Journal of Applied Physics, 2011, 109, 093515.	1.1	36
22	Lattice dynamics and external magnetic-field effects in Ni-Fe-Ga alloys. Physical Review B, 2009, 80, .	1.1	34
23	Magnetic properties of the martensitic phase in Ni-Mn-In-Co metamagnetic shape memory alloys. Applied Physics Letters, 2013, 102, .	1.5	32
24	Entropy change linked to the magnetic field induced Morin transition in Hematite nanoparticles. Applied Physics Letters, 2012, 100, 063102.	1.5	30
25	Quantitative analysis of δ′ precipitation kinetics in Al–Li alloys. Acta Materialia, 2000, 48, 1283-1296.	3.8	28
26	Magnetic properties of Mn-doped finemet nanocrystalline alloy. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1517-1519.	1.0	28
27	Long-Range Atomic Order and Entropy Change at the Martensitic Transformation in a Ni-Mn-In-Co Metamagnetic Shape Memory Alloy. Entropy, 2014, 16, 2756-2767.	1.1	28
28	Internal friction behaviour during martensitic transformation in shape memory alloys processed by powder metallurgy. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 492-496.	2.6	26
29	Effect of Mn addition on the structural and magnetic properties of Fe–Pd ferromagnetic shape memory alloys. Acta Materialia, 2009, 57, 4224-4232.	3.8	26
30	Structural and magnetic properties of Cr-doped Ni–Mn–In metamagnetic shape memory alloys. Journal Physics D: Applied Physics, 2011, 44, 395001.	1.3	26
31	Influence of the atomic order on the magnetic characteristics of a Ni–Mn–Ga ferromagnetic shape memory alloy. Journal of Magnetism and Magnetic Materials, 2008, 320, e160-e163.	1.0	25
32	Magnetic nanoparticle detection method employing non-linear magnetoimpedance effects. Journal of Applied Physics, 2017, 121, .	1.1	24
33	Vibrational and magnetic contributions to the entropy change associated with the martensitic transformation of Ni–Fe–Ga ferromagnetic shape memory alloys. Journal of Physics Condensed Matter, 2010, 22, 416001.	0.7	23
34	Dependence of the relative stability between austenite and martensite phases on the atomic order in a Ni–Mn–In Metamagnetic Shape Memory Alloy. Journal of Alloys and Compounds, 2012, 536, S308-S311.	2.8	23
35	Magnetotunable left-handed FeSiB ferromagnetic microwires. Optics Letters, 2010, 35, 2161.	1.7	22
36	Vibrational and magnetic behavior of transforming and nontransforming Ni-Mn-Ga alloys. Physical Review B, 2007, 76, .	1.1	21

#	Article	IF	Citations
37	Ni–Mn–Ga ferromagnetic shape memory wires. Journal of Applied Physics, 2010, 107, .	1.1	21
38	Low-temperature specific heat of Ni–Mn–Ga ferromagnetic shape memory alloys. Journal of Magnetism and Magnetic Materials, 2008, 320, e156-e159.	1.0	20
39	Theoretical Modeling and Experimental Verification of the Scattering From a Ferromagnetic Microwire. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 517-526.	2.9	20
40	The effect of annealing on the transformation and the microstructure of Mn1â^'Cr CoGe alloys. Materials Characterization, 2014, 93, 24-31.	1.9	20
41	Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation. Scientific Reports, 2017, 7, 13328.	1.6	20
42	Study of Optical Fiber Sensors for Cryogenic Temperature Measurements. Sensors, 2017, 17, 2773.	2.1	20
43	Entropy change of martensitic transformation in ferromagnetic shape memory alloys. Acta Materialia, 2013, 61, 1764-1772.	3.8	19
44	119Sn MÃ \P ssbauer spectroscopy for assessing the local stress and defect state towards the tuning of Ni-Mn-Sn alloys. Applied Physics Letters, 2017, 110, .	1.5	19
45	Effect of Cu substitution on the magnetic and magnetic induction heating response of CdFe2O4 spinel ferrite. Journal of Magnetism and Magnetic Materials, 2020, 499, 166201.	1.0	19
46	Temperature dependence of magnetic properties in Fe-Co and Fe-Cr base nanocrystalline alloys. IEEE Transactions on Magnetics, 2003, 39, 3019-3024.	1.2	18
47	Correlation between defects and magneto-structural properties in Ni-Mn-Sn metamagnetic shape memory alloys. Intermetallics, 2018, 94, 133-137.	1.8	18
48	Reversible and irreversible martensitic transformations in Fe-Pd and Fe-Pd-Co alloys. European Physical Journal: Special Topics, 2008, 158, 107-112.	1.2	17
49	Influence of thermo-mechanical processing on the microstructure of Cu-based shape memory alloys produced by powder metallurgy. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2004, 378, 263-268.	2.6	16
50	Influence on the martensitic transformation of the β phase decomposition process in a Cu–Al–Ni shape memory alloy. Journal of Physics Condensed Matter, 2005, 17, 4223-4236.	0.7	16
51	Mechanical spectroscopy in Fe–Al–Si alloys at elevated temperatures. Journal of Alloys and Compounds, 2009, 468, 96-102.	2.8	16
52	High-Field Gradient Permanent Micromagnets for Targeted Drug Delivery with Magnetic Nanoparticles. AIP Conference Proceedings, 2010, , .	0.3	16
53	Effect of magnetic field on the isothermal transformation of a Ni–Mn–In–Co magnetic shape memory alloy. Intermetallics, 2012, 28, 144-148.	1.8	16
54	Influence of defects on the irreversible phase transition in Fe–Pd ferromagnetic shape memory alloys. Acta Materialia, 2015, 86, 110-117.	3.8	16

#	Article	IF	Citations
55	Magnetically tunable damping in composites for 4D printing. Composites Science and Technology, 2021, 201, 108538.	3.8	16
56	Determination of the order in γ1 intermetallic phase in Cu–Al–Ni shape memory alloys. Intermetallics, 2003, 11, 927-930.	1.8	15
57	Mechanical spectroscopy in commercial Fe–6 wt.% Si alloys between 400 and 1000 K. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2004, 370, 459-463.	2.6	15
58	Effect of thermal treatments on the martensitic transformation in Co-containing Ni–Mn–Ga alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 293-297.	2.6	15
59	Influence of Long-Range Atomic Order on the Structural and Magnetic Properties of Ni-Mn-Ga Ferromagnetic Shape Memory Alloys. Materials Science Forum, 0, 684, 85-103.	0.3	15
60	Mechanically induced disorder and crystallization process in Ni-Mn-In ball-milled alloys. Journal of Alloys and Compounds, 2016, 689, 983-991.	2.8	15
61	Study of the phases in a copper cathode during an electrodeposition process for obtaining Cu–Li alloys. Materials Research Bulletin, 2000, 35, 1023-1033.	2.7	14
62	Neutron diffraction analysis of the β decomposition process in a texture free Cu–Al–Ni shape memory alloy. Physica B: Condensed Matter, 2004, 350, E1007-E1009.	1.3	14
63	Thermal stability and ordering effects in Ni–Fe–Ga ferromagnetic shape memory alloys. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 262-265.	2.6	14
64	Order controlled dislocations and grain boundary mobility in Fe–Al–Cr alloys. Journal of Alloys and Compounds, 2012, 537, 117-122.	2.8	14
65	Direct evidence of the magnetoelastic interaction in Ni2MnGa magnetic shape memory system. Applied Physics Letters, 2013, 102, .	1.5	14
66	Magnetocaloric effect enhancement driven by intrinsic defects in a Ni45Co5Mn35Sn15 alloy. Journal of Alloys and Compounds, 2019, 774, 586-592.	2.8	14
67	Magnetocaloric effect in FeCr soft magnetic nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 2007, 316, e876-e878.	1.0	13
68	Giant Stress Impedance Magnetoelastic Sensors Employing Soft Magnetic Amorphous Ribbons. Materials, 2020, 13, 2175.	1.3	13
69	Crystallographic structure of <i>S</i> ′ precipitates in Al–Li–Cu–Mg alloys. Journal of Materials Research, 1997, 12, 577-580.	1.2	12
70	Quantitative ι Phase Analysis in Al–Li Alloys using the Rietveld Method. Journal of Applied Crystallography, 1997, 30, 107-113.	1.9	12
71	Defect pinning of interface motion in thermoelastic structural transitions of Cu-Al-Ni shape-memory alloy. Physical Review B, 2006, 73, .	1.1	12
72	High temperature atomic rearrangements in melt-spun Ni–Mn–Ga ribbons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 927-930.	2.6	12

#	Article	IF	Citations
73	Characterisation and modelling of vacancy dynamics in Ni–Mn–Ga ferromagnetic shape memory alloys. Journal of Alloys and Compounds, 2015, 639, 180-186.	2.8	12
74	Giant stress-impedance (GSI) sensor for diameter evaluation in cylindrical elements. Sensors and Actuators A: Physical, 2018, 269, 269-275.	2.0	12
75	Enhanced Magnetic Nanoparticle Detection Sensitivity in Non-Linear Magnetoimpedance-Based Sensor. IEEE Sensors Journal, 2018, 18, 8701-8708.	2.4	12
76	Outstanding role of the magnetic entropy in arrested austenite in an ordered Ni45Mn36.7ln13.3Co5 metamagnetic shape memory alloy. Scripta Materialia, 2019, 168, 91-95.	2.6	12
77	Identification of a Ni-vacancy defect in Ni-Min- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Z</mml:mi></mml:math> (<mml:math) etqq1<="" td="" tj=""><td>l 1 0.7843 1.1</td><td>314 rgBT / 12</td></mml:math)>	l 1 0.7843 1.1	314 rgBT / 12
78	Influence of Cr substitution in the magnetoimpedance response of FeSiBCuNb wires. Sensors and Actuators A: Physical, 2003, 106, 230-233.	2.0	11
79	Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys. Applied Physics Letters, 2014, 104, .	1.5	11
80	Thermal Degradation of Type I Collagen from Bones. Journal of Renewable Materials, 2016, 4, 251-257.	1.1	11
81	Elastic and superelastic properties of Co49Ni22Ga29 single crystal. Applied Physics Letters, 2007, 90, 201914.	1.5	10
82	Effect of Co and Mn Doping on the Martensitic Transformations and Magnetic Properties of Fe-Pd Ferromagnetic Shape Memory Alloys. Materials Science Forum, 0, 635, 103-110.	0.3	10
83	Peculiarities of magnetoelastic coupling in Ni–Fe–Ga–Co ferromagnetic martensite. Journal Physics D: Applied Physics, 2010, 43, 175002.	1.3	10
84	Relaxation effects in magnetic-field-induced martensitic transformation of an Ni–Mn–In–Co alloy. Acta Materialia, 2014, 71, 117-125.	3.8	10
85	Effect of Ti addition on the mechanical properties and the magnetocaloric effect of Ni–Mn–In metamagnetic shape memory alloys. Journal Physics D: Applied Physics, 2015, 48, 445006.	1.3	10
86	Fe-C nanoparticles obtained from thermal decomposition employing sugars as reducing agents. Journal of Alloys and Compounds, 2021, 863, 158065.	2.8	10
87	Characterization of the martensitic transformation in melt-spun NiMnGa ribbons by magnetoinductive effect. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 826-828.	1.0	9
88	Magnetic study of the martensitic transformation in a Fe–Pd alloy. Journal of Magnetism and Magnetic Materials, 2007, 316, e614-e617.	1.0	9
89	Magnetic behavior in Ni–Fe–Ga martensitic phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 318-321.	2.6	9
90	Non-equilibrium martensitic transformation in metamagnetic shape memory alloys. Journal of Alloys and Compounds, 2012, 536, S277-S281.	2.8	9

#	Article	IF	Citations
91	Influence of thermal treatments on the mechanical properties and the martensitic transformation in Fe-Pd-Mn ferromagnetic shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 683, 164-171.	2.6	9
92	Effect of high-energy ball-milling on the magnetostructural properties of a Ni45Co5Mn35Sn15 alloy. Journal of Alloys and Compounds, 2021, 858, 158350.	2.8	9
93	Effect of the decomposition process in the magnetic properties of disordered FePd alloys. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 179-181.	1.0	8
94	Secondary recrystallization in Fe–6.5 wt% Si alloys by internal friction. Journal of Non-Crystalline Solids, 2001, 287, 70-74.	1.5	8
95	Magnetic transition in nanocrystalline soft magnetic alloys analyzed via ac inductive techniques. Physical Review B, 2004, 70, .	1.1	8
96	Analysis of heating effects (magnetic hyperthermia) in FeCrSiBCuNb amorphous and nanocrystalline wires. Journal of Applied Physics, 2012, 111, 07A314.	1.1	8
97	Mobility of Twin Boundaries in Fe-Pd-Based Ferromagnetic Shape Memory Alloys. Materials Transactions, 2016, 57, 1837-1844.	0.4	8
98	Determination of the vibrational contribution to the entropy change at the martensitic transformation in Ni–Mn–Sn metamagnetic shape memory alloys: a combined approach of time-of-flight neutron spectroscopy and <i>ab initio</i> calculations. Journal of Physics Condensed Matter, 2016, 28, 205402.	0.7	8
99	Computational Modeling and Inelastic Neutron Scattering Contributions to the Study of Methyl-silica Xerogels: A Combined Theoretical and Experimental Analysis. Journal of Physical Chemistry C, 2017, 121, 22836-22845.	1.5	8
100	Experimental Observation of Vacancy-assisted Martensitic Transformation Shift in Ni-Fe-Ga Alloys. Physical Review Letters, 2019, 122, 165701.	2.9	8
101	Routes for enhanced magnetism in Ni-Mn-In metamagnetic shape memory alloys. Scripta Materialia, 2019, 167, 21-25.	2.6	8
102	Correlation between particle size and magnetic properties in soft-milled Ni45Co5Mn34ln16 powders. Intermetallics, 2021, 130, 107076.	1.8	8
103	Effect of the oxygen in the evolution of the microstructure in a Cu–18 at.% Li alloy. Materials Letters, 2002, 56, 709-715.	1.3	7
104	Effect of the ordering on the magnetic and magnetoimpedance properties of Fe-6.5% Si alloy. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 88-90.	1.0	7
105	Latent heat contribution to the direct magnetocaloric effect in Ni–Mn–Ga shape memory alloys with coupled martensitic and magnetic transformations. Journal Physics D: Applied Physics, 2016, 49, 205004.	1.3	7
106	Room temperature huge magnetocaloric properties in low hysteresis ordered Cu-doped Ni-Mn-In-Co alloys. Journal of Alloys and Compounds, 2022, 922, 166143.	2.8	7
107	Thermoelectric power measurements of the early stages of δ′ precipitation in Al-Li alloys. Scripta Metallurgica Et Materialia, 1995, 32, 1307-1312.	1.0	6
108	Effect of the metal support interactions on the physicochemical and magnetic properties of Ni catalysts. Journal of Magnetism and Magnetic Materials, 2007, 316, e783-e786.	1.0	6

#	Article	IF	CITATIONS
109	Multifunctional Sensor Based on a Hybrid Ferromagnetic/Sol–Gel TiO2Coating Nanostructure. Industrial & Description of the Structure of the Market Research, 2013, 52, 3787-3793.	1.8	6
110	Influence of Structural Defects on the Properties of Metamagnetic Shape Memory Alloys. Metals, 2020, 10, 1131.	1.0	6
111	Stress induced Liâ€Li pairs reorientation in Alâ€Li alloys. Applied Physics Letters, 1995, 67, 1200-1202.	1.5	5
112	Study of the δreversion process in 8090 alloys. Scripta Materialia, 1997, 37, 851-859.	2.6	5
113	In situ study of the \hat{l}^2 phase decomposition process in a Cu-Al-Ni shape memory alloy processed by powder metallurgy. European Physical Journal Special Topics, 2003, 112, 605-609.	0.2	5
114	Obtaining of single phase Cu–Li alloy through an electrodeposition process. Materials Letters, 2005, 59, 349-354.	1.3	5
115	Elastic behavior during early stage of β phase decomposition in a Cu–Al–Ni shape memory alloy. Applied Physics Letters, 2005, 86, 231903.	1.5	5
116	Pre-martensitic phenomena in a near stoichiometric Ni _2 MnGa Polycrystalline alloy. International Journal of Applied Electromagnetics and Mechanics, 2006, 23, 93-98.	0.3	5
117	Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys. Journal of Physics Condensed Matter, 2010, 22, 316004.	0.7	5
118	Magnetic induction heating of FeCr nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 2012, 324, 1897-1901.	1.0	5
119	A Comprehensive Analysis of the Absorption Spectrum of Conducting Ferromagnetic Wires. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 2055-2065.	2.9	5
120	Relation between order degree, damping behaviour and magnetic response in Fe-Si and Fe-Al-Si alloys. Neutron News, 2014, 25, 28-31.	0.1	5
121	Order Evolution in Iron-Based Alloys Viewed through Amplitude Dependent Damping Studies. Materials Transactions, 2015, 56, 182-186.	0.4	5
122	Morin transition in Hematite nanoparticles analyzed by neutron diffraction. Journal of Physics: Conference Series, 2015, 663, 012003.	0.3	5
123	Magnetically driven magnetostructural transformations of shape memory alloys. Journal Physics D: Applied Physics, 2016, 49, 095002.	1.3	5
124	GMI Magnetoelastic Sensor for Measuring Trunk Diameter Variations in Plants. IEEE Transactions on Magnetics, 2017, 53, 1-5.	1.2	5
125	119Sn M $ ilde{A}$ q ssbauer spectroscopy in the study of metamagnetic shape memory alloys. Hyperfine Interactions, 2018, 239, 1.	0.2	5
126	Testing the Applicability of 119Sn Mössbauer Spectroscopy for the Internal Stress Study in Ternary and Co-Doped Ni-Mn-Sn Metamagnetic Alloys. Metals, 2021, 11, 450.	1.0	5

#	Article	IF	Citations
127	Magnetic behavior in commercial iron-silicon alloys controlled by the dislocation dynamics at temperatures below 420ÂK. Journal of Alloys and Compounds, 2021, 856, 157934.	2.8	5
128	Magnetocaloric effect linked to structural and magnetic transitions in Ni–Fe–Ga alloys. Journal of Magnetism and Magnetic Materials, 2007, 310, e999-e1001.	1.0	4
129	Mechanical Spectroscopy and Neutron Diffraction Studies in Fe-Al-Si Alloys. Solid State Phenomena, 2008, 137, 91-98.	0.3	4
130	Temperature and time dependent magnetic phenomena in a nearly stoichiometric Ni2MnGa alloy. Journal of Physics Condensed Matter, 2009, 21, 026020.	0.7	4
131	Thermal Destruction on the Nanoscale: Cell Membrane Hyperthermia with Functionalized Magnetic Nanoparticles. , 2010, , .		4
132	Ellipsometry applied to phase transitions and relaxation phenomena in Ni2MnGa ferromagnetic shape memory alloy. Applied Physics Letters, 2012, 101, .	1.5	4
133	Low temperature magnetic properties of a Ni50Mn34In16 ball-milled metamagnetic shape memory alloy. Journal of Non-Crystalline Solids, 2016, 447, 16-20.	1.5	4
134	Interferometric vs. wavelength selective optical fiber sensors for cryogenic temperature measurements. Proceedings of SPIE, 2017, , .	0.8	4
135	Steering the synthesis of Fe3O4 nanoparticles under sonication by using a fractional factorial design. Materials Chemistry and Physics, 2021, 270, 124760.	2.0	4
136	Internal friction associated with δ′ precipitation in Al–Li alloys. Materials Science & Department of the Structural Materials: Properties, Microstructure and Processing, 1998, 249, 241-248.	2.6	3
137	Magnetic relaxation in melt-spun amorphous and nanocrystalline Mn-doped nanocrystalline alloy. Journal of Magnetism and Magnetic Materials, 2007, 310, 2466-2468.	1.0	3
138	Positron Annihilation Spectroscopy Study of NiMnGa Modulated and Non-Modulated Martensitic Phases. Materials Science Forum, 0, 635, 55-61.	0.3	3
139	Transformation behavior of Ni–Mn–Ga in the low-temperature limit. Journal of Physics Condensed Matter, 2012, 24, 276004.	0.7	3
140	Positron Annihilation Spectroscopy Study of Ni-Mn-Ga Ferromagnetic Shape Memory Alloys. Physics Procedia, 2012, 35, 57-62.	1.2	3
141	Low Field Magnetic and Thermal Hysteresis in Antiferromagnetic Dysprosium. Metals, 2017, 7, 215.	1.0	3
142	Deformation induced martensite stabilization in Ni45Mn36.7In13.3Co5 microparticles. Journal of Alloys and Compounds, 2021, 870, 159536.	2.8	3
143	Effect of Annealing Temperature on Magnetic After-Effect in FeCuNbSiB Alloys. European Physical Journal Special Topics, 1996, 06, C8-549-C8-552.	0.2	3
144	Vacancies mediated ordering in Ni-Mn-Ga shape memory alloys. Scripta Materialia, 2022, 215, 114731.	2.6	3

#	Article	IF	CITATIONS
145	Influence of atomic rearrangements on the magnetic properties of a thermally treated disordered Fe21Pd79 alloy. Journal of Non-Crystalline Solids, 2001, 287, 96-99.	1.5	2
146	Systematic study of the reordering process in FeAl alloys by neutron diffraction. Journal of Non-Crystalline Solids, 2003, 329, 39-42.	1.5	2
147	Vibrational behavior of the β phase near martensitic transformation in Cu–Al–Ni shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 243-247.	2.6	2
148	Phase evolution in a Cu–18 at.% Li alloy as a function of temperature under different atmospheres. Powder Technology, 2005, 152, 24-30.	2.1	2
149	Analysis of the strain misfit between matrix and inclusions in a magnetically tunable composite. Mechanics of Materials, 2021, 162, 104045.	1.7	2
150	Changes in the crystalline degree in neutron irradiated EPDM viewed through infrared spectroscopy and inelastic neutron scattering. Revista Materia, 2018, 23, .	0.1	2
151	Martensitic transformation controlled by electromagnetic field: From experimental evidence to wireless actuator applications. Materials and Design, 2022, 219, 110746.	3.3	2
152	Zener Relaxation in Al-Li Binary Alloys. European Physical Journal Special Topics, 1996, 06, C8-77-C8-80.	0.2	1
153	Martensitic transformation in Cu-Al-Ni shape memory alloys obtained by ball milling. European Physical Journal Special Topics, 2003, 112, 575-578.	0.2	1
154	Analysis of the nanocrystalline phase in Fe73.5â°xAxSi13.5B9Cu1Nb3 (A=Cr and Co) alloys. Physica B: Condensed Matter, 2004, 350, E135-E138.	1.3	1
155	Study of the transformation sequence on a high temperature martensitic transformation Ni-Mn-Ga-Co shape memory alloy. Journal of Physics: Conference Series, 2014, 549, 012017.	0.3	1
156	Mobility of dislocations and grain boundaries controlled by the order degree in iron-based alloys. Journal of Physics: Conference Series, 2015, 663, 012013.	0.3	1
157	Entropy Change Caused by Martensitic Transformations of Ferromagnetic Shape Memory Alloys. Metals, 2017, 7, 509.	1.0	1
158	Influence of defects on the irreversible phase transition in the Fe-Pd doped with Co and Mn. Revista Materia, 2018, 23, .	0.1	1
159	Study of the martensitic transition in Ni-Mn-Sn-Ti ferromagnetic shape memory alloys. Revista Materia, 2018, 23, .	0.1	1
160	Elastic and Plastic Strains Misfits During the Reverse Martensitic Transformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 706-722.	1.1	1
161	Thermal dependence of magnetic properties in Fe-Co and Fe-Cr base nanocrystalline alloys. , 0, , .		0
162	Neutron diffraction analysis of the order in a Cu-Al-Ni shape memory alloy processed by powder metallurgy. European Physical Journal Special Topics, 2003, 112, 611-614.	0.2	0

#	Article	IF	CITATIONS
163	Study of Co-containing Ni-Mn-Ga by positron annihilation. Journal of Physics: Conference Series, 2011, 265, 012015.	0.3	O
164	Defects structure characterization of NiMnGa alloys by PALS. Journal of Physics: Conference Series, 2013, 443, 012039.	0.3	0
165	7th Meeting of the Spanish Neutron Scattering Association (SETN). Journal of Physics: Conference Series, 2015, 663, 011001.	0.3	O
166	Evolution of magnetic response as a function of annealing temperature in Fe-based alloys. Revista Materia, 2018, 23, .	0.1	0