
Xavier Escote

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7742079/publications.pdf Version: 2024-02-01

XAVIED ESCOTE

#	Article	IF	CITATIONS
1	Structured Long-Chain Omega-3 Fatty Acids for Improvement of Cognitive Function during Aging. International Journal of Molecular Sciences, 2022, 23, 3472.	1.8	9
2	Proanthocyanidins Restore the Metabolic Diurnal Rhythm of Subcutaneous White Adipose Tissue According to Time-Of-Day Consumption. Nutrients, 2022, 14, 2246.	1.7	2
3	A double-blinded, randomized, parallel intervention to evaluate biomarker-based nutrition plans for weight loss: The PREVENTOMICS study. Clinical Nutrition, 2022, 41, 1834-1844.	2.3	15
4	Maresin 1 regulates insulin signaling in human adipocytes as well as in adipose tissue and muscle of lean and obese mice. Journal of Physiology and Biochemistry, 2021, 77, 167-173.	1.3	18
5	Supplementation with a Specific Combination of Metabolic Cofactors Ameliorates Non-Alcoholic Fatty Liver Disease, Hepatic Fibrosis, and Insulin Resistance in Mice. Nutrients, 2021, 13, 3532.	1.7	11
6	Regulation of p27 and Cdk2 Expression in Different Adipose Tissue Depots in Aging and Obesity. International Journal of Molecular Sciences, 2021, 22, 11745.	1.8	4
7	GLUT12 Expression in Brain of Mouse Models of Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 798-805.	1.9	14
8	Omega-3 fatty acids as regulators of brown/beige adipose tissue: from mechanisms to therapeutic potential. Journal of Physiology and Biochemistry, 2020, 76, 251-267.	1.3	18
9	Effects of Maresin 1 (MaR1) on Colonic Inflammation and Gut Dysbiosis in Diet-Induced Obese Mice. Microorganisms, 2020, 8, 1156.	1.6	14
10	Detection of Early Disease Risk Factors Associated with Metabolic Syndrome: A New Era with the NMR Metabolomics Assessment. Nutrients, 2020, 12, 806.	1.7	40
11	Diet, Gut Microbiota and Non-Alcoholic Fatty Liver Disease: Three Parts of the Same Axis. Cells, 2020, 9, 176.	1.8	63
12	Effect of Hesperidin on Cardiovascular Disease Risk Factors: The Role of Intestinal Microbiota on Hesperidin Bioavailability. Nutrients, 2020, 12, 1488.	1.7	95
13	Maresin 1 Regulates Hepatic FGF21 in Dietâ€Induced Obese Mice and in Cultured Hepatocytes. Molecular Nutrition and Food Research, 2019, 63, e1900358.	1.5	21
14	Effects of EPA and lipoic acid supplementation on circulating FGF21 and the fatty acid profile in overweight/obese women following a hypocaloric diet. Food and Function, 2018, 9, 3028-3036.	2.1	16
15	Inflammation and Oxidative Stress in Adipose Tissue. , 2018, , 63-92.		6
16	Potential clinical treatment of colitis with cardiotrophin-1. Clinical Science, 2018, 132, 2169-2174.	1.8	2
17	Role of cardiotrophinâ€1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24â€h circulating CTâ€1 profiles in normalâ€weight and overweight/obese subjects. FASEB Journal, 2017, 31, 1639-1649.	0.2	6
18	Zinc alpha-2 glycoprotein is overproduced in Cushing's syndrome. Endocrinologia, Diabetes Y NutriciÓn, 2017, 64, 26-33.	0.1	7

XAVIER ESCOTE

#	Article	IF	CITATIONS
19	Maresin 1 improves insulin sensitivity and attenuates adipose tissue inflammation in ob/ob and dietâ€induced obese mice. FASEB Journal, 2017, 31, 2135-2145.	0.2	80
20	Zinc alpha-2 glycoprotein is overproduced in Cushing's syndrome. EndocrinologÃa Diabetes Y Nutrición (English Ed), 2017, 64, 26-33.	0.1	0
21	Effects of dietary supplementation with EPA and/or αâ€lipoic acid on adipose tissue transcriptomic profile of healthy overweight/obese women following a hypocaloric diet. BioFactors, 2017, 43, 117-131.	2.6	31
22	Role of Omentin, Vaspin, Cardiotrophin-1, TWEAK and NOV/CCN3 in Obesity and Diabetes Development. International Journal of Molecular Sciences, 2017, 18, 1770.	1.8	81
23	Adipose Tissue and Serum CCDC80 in Obesity and Its Association with Related Metabolic Disease. Molecular Medicine, 2017, 23, 225-234.	1.9	21
24	Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E756-E769.	1.8	143
25	Lipopolysaccharide binding protein is an adipokine involved in the resilience of the mouse adipocyte to inflammation. Diabetologia, 2015, 58, 2424-2434.	2.9	28
26	HIV/antiretroviral therapy–related lipodystrophy syndrome (HALS) is associated with higher RBP4 and lower omentin in plasma. Clinical Microbiology and Infection, 2015, 21, 711.e1-711.e8.	2.8	8
27	Metabolic adaptation to cancer growth: From the cell to the organism. Cancer Letters, 2015, 356, 171-175.	3.2	21
28	CDK4 is an essential insulin effector in adipocytes. Journal of Clinical Investigation, 2015, 126, 335-348.	3.9	65
29	Serum Activin A and Follistatin Levels in Gestational Diabetes and the Association of the Activin A-Follistatin System with Anthropometric Parameters in Offspring. PLoS ONE, 2014, 9, e92175.	1.1	21
30	Involvement of the LPS-LPB-CD14-MD2-TLR4 inflammation pathway in HIV-1/HAART-associated lipodystrophy syndrome (HALS). Journal of Antimicrobial Chemotherapy, 2014, 69, 1653-1659.	1.3	19
31	A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia, 2013, 56, 2524-2537.	2.9	109
32	Lipopolysaccharide-binding protein is increased in patients with psoriasis with metabolic syndrome, and correlates with C-reactive protein. Clinical and Experimental Dermatology, 2013, 38, 81-84.	0.6	29
33	Phosphate-Activated Cyclin-Dependent Kinase Stabilizes G ₁ Cyclin To Trigger Cell Cycle Entry. Molecular and Cellular Biology, 2013, 33, 1273-1284.	1.1	29
34	Control of the cell cycle progression by the MAPK Hog1. MAP Kinase, 2013, 2, .	0.3	2
35	Munc18c in Adipose Tissue Is Downregulated in Obesity and Is Associated with Insulin. PLoS ONE, 2013, 8, e63937.	1.1	16
36	Leptin and adiponectin, but not IL18, are related with insulin resistance in treated HIV-1-infected patients with lipodystrophy. Cytokine, 2012, 58, 253-260.	1.4	26

XAVIER ESCOTE

#	Article	IF	CITATIONS
37	FABP4 Dynamics in Obesity: Discrepancies in Adipose Tissue and Liver Expression Regarding Circulating Plasma Levels. PLoS ONE, 2012, 7, e48605.	1.1	67
38	Resveratrol induces antioxidant defence via transcription factor Yap1p. Yeast, 2012, 29, 251-263.	0.8	33
39	Sip18 hydrophilin prevents yeast cell death during desiccation stress. Journal of Applied Microbiology, 2012, 112, 512-525.	1.4	38
40	Zinc alphaâ€2 glycoprotein is implicated in dyslipidaemia in <scp>HIV</scp> â€1â€infected patients treated with antiretroviral drugs. HIV Medicine, 2012, 13, 297-303.	1.0	20
41	Zinc-Alpha 2-Glycoprotein Gene Expression in Adipose Tissue Is Related with Insulin Resistance and Lipolytic Genes in Morbidly Obese Patients. PLoS ONE, 2012, 7, e33264.	1.1	48
42	Zinc-α2-Glycoprotein Is Unrelated to Gestational Diabetes: Anthropometric and Metabolic Determinants in Pregnant Women and Their Offspring. PLoS ONE, 2012, 7, e47601.	1.1	9
43	Study of the Potential Association of Adipose Tissue GLP-1 Receptor with Obesity and Insulin Resistance. Endocrinology, 2011, 152, 4072-4079.	1.4	121
44	Lipodystrophy and Insulin Resistance in Combination Antiretroviral Treated HIV-1–Infected Patients: Implication of Resistin. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 57, 16-23.	0.9	20
45	The stressâ€activated protein kinase Hog1 develops a critical role after resting state. Molecular Microbiology, 2011, 80, 423-435.	1.2	13
46	A study of fatty acid binding protein 4 in HIV-1 infection and in combination antiretroviral therapy-related metabolic disturbances and lipodystrophy. HIV Medicine, 2011, 12, 428-437.	1.0	15
47	Pharmacogenetics of the Metabolic Disturbances and Atherosclerosis Associated with Antiretroviral Therapy in HIV-Infected Patients. Current Pharmaceutical Design, 2010, 16, 3379-3389.	0.9	12
48	Relation between human LPIN1, hypoxia and endoplasmic reticulum stress genes in subcutaneous and visceral adipose tissue. International Journal of Obesity, 2010, 34, 679-686.	1.6	20
49	<i>Lpin1</i> in human visceral and subcutaneous adipose tissue: similar levels but different associations with lipogenic and lipolytic genes. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E308-E317.	1.8	5
50	Cyclin G2 Regulates Adipogenesis through PPARÎ ³ Coactivation. Endocrinology, 2010, 151, 5247-5254.	1.4	46
51	Paired Subcutaneous and Visceral Adipose Tissue Aquaporin-7 Expression in Human Obesity and Type 2 Diabetes: Differences and Similarities between Depots. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3470-3479.	1.8	59
52	Circulating and Adipose Tissue Gene Expression of Zinc-α2-Glycoprotein in Obesity: Its Relationship with Adipokine and Lipolytic Gene Markers in Subcutaneous and Visceral Fat. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 5062-5069.	1.8	78
53	Adipocyte Fatty Acidâ€binding Protein as a Determinant of Insulin Sensitivity in Morbidâ€obese Women. Obesity, 2009, 17, 1124-1128.	1.5	34
54	Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO Journal, 2006, 25, 2338-2346.	3.5	127

#	Article	IF	CITATIONS
55	Control of Cell Cycle Progression by the Stress-Activated Hog1 MAPK. Cell Cycle, 2005, 4, 6-7.	1.3	30
56	Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nature Cell Biology, 2004, 6, 997-1002.	4.6	212