
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7742037/publications.pdf Version: 2024-02-01

Ριι αρ ζανά

#	Article	IF	CITATIONS
1	Effect of high-pressure processing and chemical composition on lipid oxidation, aminopeptidase activity and free amino acids of Serrano dry-cured ham. Meat Science, 2021, 172, 108349.	2.7	26
2	Inactivation of Listeria monocytogenes during dry-cured ham processing. International Journal of Food Microbiology, 2020, 318, 108469.	2.1	17
3	Effect of a nisinâ€producing lactococcal starter on the late blowing defect of cheese caused by <i>Clostridium tyrobutyricum</i> . International Journal of Food Science and Technology, 2020, 55, 3343-3349.	1.3	12
4	Effect of Lactococcus lactis expressing phage endolysin on the late blowing defect of cheese caused by Clostridium tyrobutyricum. International Journal of Food Microbiology, 2020, 329, 108686.	2.1	11
5	Expression of a β-glucosidase in bacteria with biotechnological interest confers them the ability to deglycosylate lignans and flavonoids in vegetal foods. Applied Microbiology and Biotechnology, 2020, 104, 4903-4913.	1.7	24
6	Application of recombinant lactic acid bacteria and bifidobacteria able to enrich soy beverage in dihydrodaidzein and dihydrogenistein. Food Research International, 2020, 134, 109257.	2.9	13
7	Production of O-desmethylangolensin, tetrahydrodaidzein, 6'-hydroxy-O-desmethylangolensin and 2-(4-hydroxyphenyl)-propionic acid in fermented soy beverage by lactic acid bacteria and Bifidobacterium strains. Food Chemistry, 2020, 318, 126521.	4.2	22
8	Technological Properties of Bifidobacterial Strains Shared by Mother and Child. BioMed Research International, 2019, 2019, 1-8.	0.9	12
9	Influence of different lignan compounds on enterolignan production by Bifidobacterium and Lactobacillus strains. International Journal of Food Microbiology, 2019, 289, 17-23.	2.1	39
10	Cheese supplementation with five species of edible seaweeds: Effect on proteolysis, lipolysis and volatile compounds. International Dairy Journal, 2019, 90, 104-113.	1.5	7
11	Bifidobacterium pseudocatenulatum INIA P815: The first bacterium able to produce urolithins A and B from ellagic acid. Journal of Functional Foods, 2018, 45, 95-99.	1.6	75
12	Production of the bioactive isoflavone O-desmethylangolensin by Enterococcus faecium INIA P553 with high efficiency. Journal of Functional Foods, 2018, 40, 180-186.	1.6	13
13	Incomplete metabolism of phytoestrogens by gut microbiota from children under the age of three. International Journal of Food Sciences and Nutrition, 2018, 69, 334-343.	1.3	12
14	Bifidobacterium adolescentis INIA P784: The first probiotic bacterium capable of producing enterodiol from lignan extracts. Journal of Functional Foods, 2017, 29, 269-274.	1.6	18
15	Industrial-scale application of Lactobacillus reuteri coupled with glycerol as a biopreservation system for inhibiting Clostridium tyrobutyricum in semi-hard ewe milk cheese. Food Microbiology, 2017, 66, 104-109.	2.1	19
16	Optimization of reuterin production in cheese by Lactobacillus reuteri. Journal of Food Science and Technology, 2017, 54, 1346-1349.	1.4	14
17	Transformation of plant isoflavones into bioactive isoflavones by lactic acid bacteria and bifidobacteria. Journal of Functional Foods, 2017, 39, 198-205.	1.6	44
18	Effect of high-pressure treatments on proteolysis, volatile compounds, texture, colour, and sensory characteristics of semi-hard raw ewe milk cheese. Food Research International, 2017, 100, 595-602.	2.9	23

#	Article	IF	CITATIONS
19	Probiotic Bacteria for Healthier Aging: Immunomodulation and Metabolism of Phytoestrogens. BioMed Research International, 2017, 2017, 1-10.	0.9	53
20	Phytoestrogen Metabolism by Adult Human Gut Microbiota. Molecules, 2016, 21, 1034.	1.7	100
21	Application of high pressure processing for controlling Clostridium tyrobutyricum and late blowing defect on semi-hard cheese. Food Microbiology, 2016, 60, 165-173.	2.1	24
22	InÂvitro toxicity of reuterin, a potential food biopreservative. Food and Chemical Toxicology, 2016, 96, 155-159.	1.8	13
23	Influence of reuterin-producing Lactobacillus reuteri coupled with glycerol on biochemical, physical and sensory properties of semi-hard ewe milk cheese. Food Research International, 2016, 90, 177-185.	2.9	12
24	Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest. International Journal of Food Sciences and Nutrition, 2016, 67, 117-124.	1.3	51
25	A New HPLC-PAD/HPLC-ESI-MS Method for the Analysis of Phytoestrogens Produced by Bacterial Metabolism. Food Analytical Methods, 2016, 9, 537-547.	1.3	27
26	Proteolysis and Flavor Characteristics of Serrano Ham Processed under Different Ripening Temperature Conditions. Journal of Food Science, 2015, 80, C2404-12.	1.5	10
27	Effect of High-Pressure Processing on the Microbiology, Proteolysis, Biogenic Amines and Flavour of Cheese Made from Unpasteurized Milk. Food and Bioprocess Technology, 2015, 8, 319-332.	2.6	19
28	Glycerol and cobalamin metabolism in lactobacilli: relevance of the propanediol dehydrogenase pdh30. European Food Research and Technology, 2015, 241, 173-184.	1.6	4
29	Effect of high-pressure-processing on the microbiology, proteolysis, texture and flavour of Brie cheese during ripening and refrigerated storage. International Dairy Journal, 2014, 37, 64-73.	1.5	19
30	Using High-Pressure Processing for Reduction of Proteolysis and Prevention of Over-ripening of Raw Milk Cheese. Food and Bioprocess Technology, 2014, 7, 1404-1413.	2.6	22
31	Reuterin and High Hydrostatic Pressure Treatments on the Inactivation of Listeria monocytogenes and Effect on the Characteristics of Cold-Smoked Salmon. Food and Bioprocess Technology, 2014, 7, 2319-2329.	2.6	26
32	Prevention of late blowing defect by reuterin produced in cheese by a Lactobacillus reuteri adjunct. Food Microbiology, 2014, 42, 82-88.	2.1	63
33	A Comparison Between E-Beam Irradiation and High-Pressure Treatment for Cold-Smoked Salmon Sanitation: Shelf-Life, Colour, Texture and Sensory Characteristics. Food and Bioprocess Technology, 2013, 6, 3177-3185.	2.6	19
34	High-Pressure Treatment and Freezing of Raw Goat Milk Curd for Cheese Manufacture: Effects on Cheese Characteristics. Food and Bioprocess Technology, 2013, 6, 2820-2830.	2.6	13
35	High-Pressure Processing for the Control of Lipolysis, Volatile Compounds and Off-odours in Raw Milk Cheese. Food and Bioprocess Technology, 2013, 7, 2207.	2.6	2
36	Proteolysis, lipolysis, volatile compounds and sensory characteristics of Hispánico cheeses made using frozen curd from raw and pasteurized ewe milk. Journal of Dairy Research, 2013, 80, 51-57.	0.7	10

#	Article	IF	CITATIONS
37	Proteolysis, Texture, and Sensory Characteristics of Serrano Hams from Duroc and Large White Pigs during Dryâ€Curing. Journal of Food Science, 2013, 78, C416-24.	1.5	20
38	Reducing Biogenic-Amine-Producing Bacteria, Decarboxylase Activity, and Biogenic Amines in Raw Milk Cheese by High-Pressure Treatments. Applied and Environmental Microbiology, 2013, 79, 1277-1283.	1.4	33
39	High pressure treatments on the inactivation of Salmonella Enteritidis and the physicochemical, rheological and color characteristics of sliced vacuum-packaged dry-cured ham. Meat Science, 2012, 91, 173-178.	2.7	36
40	Sugars and organic acids in raw and pasteurized milk Manchego cheeses with different degrees of late blowing defect. International Dairy Journal, 2012, 25, 87-91.	1.5	43
41	Effect of high pressure treatments on smoked cod quality during refrigerated storage. Food Control, 2012, 23, 429-436.	2.8	54
42	Enhanced PFGE protocol to study the genomic diversity of Clostridium spp. isolated from Manchego cheeses with late blowing defect. Food Control, 2012, 28, 392-399.	2.8	17
43	Combined effect of high pressure treatments and the lactoperoxidase system on the inactivation of Listeria monocytogenes in cold-smoked salmon. Innovative Food Science and Emerging Technologies, 2012, 16, 26-32.	2.7	26
44	Occurrence of Clostridium spp. in ovine milk and Manchego cheese with late blowing defect: Identification and characterization of isolates. International Dairy Journal, 2011, 21, 272-278.	1.5	71
45	Microbiological, chemical, and sensory characteristics of Hispánico cheese manufactured using frozen high pressure treated curds made from raw ovine milk. International Dairy Journal, 2011, 21, 484-492.	1.5	19
46	Outgrowth inhibition of Clostridium beijerinckii spores by a bacteriocin-producing lactic culture in ovine milk cheese. International Journal of Food Microbiology, 2011, 150, 59-65.	2.1	46
47	Microbiological, chemical, textural and sensory characteristics of Hispánico cheese manufactured using frozen ovine milk curds scalded at different temperatures. International Dairy Journal, 2010, 20, 344-351.	1.5	13
48	Modification of the volatile compound profile of cheese, by aLactococcus lactisstrain expressing a mutant oligopeptide binding protein. Journal of Dairy Research, 2008, 75, 30-36.	0.7	4
49	Effect of high-pressure treatments on proteolysis and texture of ewes' raw milk La Serena cheese. International Dairy Journal, 2007, 17, 1424-1433.	1.5	38
50	Effect of Cheese Water Activity and Carbohydrate Content on the Barotolerance of Listeria monocytogenes Scott A. Journal of Food Protection, 2006, 69, 1328-1333.	0.8	24
51	Combined Effect of High-Pressure Treatments and Bacteriocin-Producing Lactic Acid Bacteria on Inactivation of Escherichia coli O157:H7 in Raw-Milk Cheese. Applied and Environmental Microbiology, 2005, 71, 3399-3404.	1.4	87
52	Proteolysis during ripening of Manchego cheese made from raw or pasteurized ewes' milk. Seasonal variation. Journal of Dairy Research, 2005, 72, 287-295.	0.7	30
53	Influence of a bacteriocin-producing lactic culture on proteolysis and texture of Hispánico cheese. International Dairy Journal, 2005, 15, 145-153.	1.5	28
54	Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. International Journal of Food Microbiology, 2004, 95, 225-229.	2.1	120

#	Article	IF	CITATIONS
55	Evolution of the volatile components of ewes raw milk Zamorano cheese. Seasonal variation. International Dairy Journal, 2004, 14, 701-711.	1.5	48
56	Evolution of the volatile components of raw ewes' milk Castellano cheese: seasonal variation. International Dairy Journal, 2004, 14, 39-46.	1.5	33
57	Volatile compounds in cheeses made from raw ewes' milk ripened with a lactic culture. Journal of Dairy Research, 2004, 71, 380-384.	0.7	9
58	Formation of volatile compounds by wild Lactococcus lactis strains isolated from raw ewes' milk cheese. International Dairy Journal, 2003, 13, 201-209.	1.5	52
59	Proteolysis in Hispánico Cheese Manufactured Using a Mesophilic Starter, a Thermophilic Starter, and Bacteriocin-ProducingLactococcus lactisSubsp. lactisINIA 415 Adjunct Culture. Journal of Agricultural and Food Chemistry, 2002, 50, 3479-3485.	2.4	52
60	Cross-Inhibition among Wild Strains of Lactococcus lactis Isolated from the Same Ecological Niche. Journal of Food Protection, 2002, 65, 205-210.	0.8	6
61	Proteolysis and formation of volatile compounds in cheese manufactured with a bacteriocin-producing adjunct culture. Journal of Dairy Research, 2001, 68, 117-129.	0.7	56
62	Control of Listeria monocytogenes by bacteriocins and monitoring of bacteriocin-producing lactic acid bacteria by colony hybridization in semi-hard raw milk cheese. Journal of Dairy Research, 2001, 68, 131-137.	0.7	47
63	Title is missing!. Biotechnology Letters, 2001, 23, 85-89.	1.1	19
64	Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. International Dairy Journal, 2000, 10, 7-15.	1.5	129
65	Inhibitory activity of a nisin-producing starter culture on Listeria innocua in raw ewes milk Manchego cheese. International Journal of Food Microbiology, 1998, 39, 129-132.	2.1	34
66	Synergistic effect of nisin and the lactoperoxidase system on Listeria monocytogenes in skim milk. International Journal of Food Microbiology, 1998, 40, 35-42.	2.1	77
67	Effect of the cysteine proteinase from Micrococcus sp. INIA 528 on the ripening process of Hispanico cheese. Journal of Dairy Research, 1998, 65, 621-630.	0.7	7
68	Streptococcus thermophilus as adjunct culture for a semi-hard cows' milk cheese. Dairy Science and Technology, 1998, 78, 501-511.	0.9	14
69	Relationship between level of hydrophobic peptides and bitterness in cheese made from pasteurized and raw milk. Journal of Dairy Research, 1997, 64, 289-297.	0.7	65
70	Bactericidal Effect of Enterocin 4 on Listeria monocytogenes in a Model Dairy System. Journal of Food Protection, 1997, 60, 28-32.	0.8	22
71	Proteinases encapsulated in stimulated release liposomes for cheese ripening. Biotechnology Letters, 1997, 19, 345-348.	1.1	14
72	Exogenous Sources of Listeria Contamination in Raw Ewe's Milk. Journal of Food Protection, 1996, 59, 950-954.	0.8	12

#	Article	IF	CITATIONS
73	Release of encapsulated proteinase from dehydration-rehydration liposomes by a co-encapsulated phospholipase. Biotechnology Letters, 1995, 17, 1051-1056.	1.1	5
74	lsolation of Tyrosine Decarboxylaseless Mutants of a Bacteriocin-Producing Enterococcus faecalis Strain and Their Application in Cheese. Journal of Food Protection, 1995, 58, 1222-1226.	0.8	22
75	Activity of Goats' Milk Lactoperoxidase System on Pseudomonas fluorescens and Escherichia coli at Refrigeration Temperatures. Journal of Food Protection, 1995, 58, 1136-1138.	0.8	23
76	Microencapsulation of cyprosins from flowers ofCynara cardunculus L. in dehydration-rehydration liposomes. Biotechnology Letters, 1994, 16, 1031-1034.	1.1	4
77	Goats' Milk Lactoperoxidase System Against Listeria monocytogenes. Journal of Food Protection, 1993, 56, 988-990.	0.8	7
78	Effect of recombinant chymosin on ewes' milk coagulation and Manchego cheese characteristics. Journal of Dairy Research, 1992, 59, 81-87.	0.7	11
79	Gredos goats' milk cheese: microbiological and chemical changes throughout ripening. Journal of Dairy Research, 1992, 59, 563-566.	0.7	30
80	Effect of vegetable and animal rennet on chemical, microbiological, rheological and sensory characteristics of La Serena cheese. Journal of Dairy Research, 1991, 58, 511-519.	0.7	59
81	Effect of lactic starter inoculation on chemical, microbiological, rheological and sensory characteristics of La Serena cheese. Journal of Dairy Research, 1991, 58, 355-361.	0.7	35
82	The lactoperoxidase system in ewes' milk: levels of lactoperoxidase and thiocyanate. Letters in Applied Microbiology, 1989, 8, 147-149.	1.0	19
83	Ewes' milk cheese: technology, microbiology and chemistry. Journal of Dairy Research, 1989, 56, 303-321.	0.7	73
84	<i>Staphylococcus aureus</i> , thermostable nuclease and staphylococcal enterotoxins in raw ewes' milk Manchego cheese. Journal of Applied Bacteriology, 1988, 65, 29-34.	1.1	24
85	Influence of lactic starter inoculation, curd heating and ripening temperature on Staphylococcus aureus behaviour in Manchego cheese. International Journal of Food Microbiology, 1988, 6, 249-257.	2.1	32
86	Changes in chemical and rheological characteristics of La Serena ewes' milk cheese during ripening. Journal of Dairy Research, 1988, 55, 457-464.	0.7	91
87	Changes in the microflora of La Serena ewes' milk cheese during ripening. Journal of Dairy Research, 1988, 55, 449-455.	0.7	88
88	Enterobacteriaceae, coliforms, faecal coliforms and salmonellas in raw ewes'milk. Journal of Applied Bacteriology, 1987, 62, 321-326.	1.1	47
89	Production of PR Toxin and Roquefortine by Penicillium roqueforti Isolates from Cabrales Blue Cheese. Journal of Food Protection, 1985, 48, 118-121.	0.8	17
90	Influence of Manufacturing and Ripening Conditions on the Survival of Enterobacteriaceae in Manchego Cheese. Journal of Dairy Science, 1985, 68, 794-800.	1.4	54

#	Article	IF	CITATIONS
91	Accelerated Decrease of Enterobacteriaceae Counts During Ripening of Raw Milk Manchego Cheese by Lactic Culture Inoculation. Journal of Food Protection, 1983, 46, 305-308.	0.8	48
92	Behavior of Salmonellae During Manufacture and Ripening of Manchego Cheese. Journal of Food Protection, 1982, 45, 1091-1095.	0.8	22