Roberto N De Guzman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7742031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural basis for Hif-1Â/CBP recognition in the cellular hypoxic response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5271-5276.	7.1	376
2	NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the Î RNA packaging signal. implications for genome recognition 1 1Edited by P. Wright. Journal of Molecular Biology, 2000, 301, 491-511.	4.2	322
3	Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of c-Myb. Journal of Molecular Biology, 2004, 337, 521-534.	4.2	181
4	Structural Basis for Cooperative Transcription Factor Binding to the CBP Coactivator. Journal of Molecular Biology, 2006, 355, 1005-1013.	4.2	166
5	Dynamical behavior of the HIV-1 nucleocapsid protein. Journal of Molecular Biology, 1998, 279, 633-649.	4.2	134
6	Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. Journal of Molecular Biology, 2000, 303, 243-253.	4.2	121
7	Natural product (â^')â€gossypol inhibits colon cancer cell growth by targeting RNAâ€binding protein Musashiâ€1. Molecular Oncology, 2015, 9, 1406-1420.	4.6	116
8	Interaction of the TAZ1 Domain of the CREB-Binding Protein with the Activation Domain of CITED2. Journal of Biological Chemistry, 2004, 279, 3042-3049.	3.4	97
9	NMR structure of stem-loop SL2 of the HIV-1 Î [.] RNA packaging signal reveals a novel A-U-A base-triple platform 1 1Edited by I. Tinoco. Journal of Molecular Biology, 2000, 299, 145-156.	4.2	95
10	Structure and Biophysics of Type III Secretion in Bacteria. Biochemistry, 2013, 52, 2508-2517.	2.5	87
11	Electrical Resistivity Measurements on Manganese Oxides with Layer and Tunnel Structures: Birnessites, Todorokites, and Cryptomelanes. Chemistry of Materials, 1995, 7, 1286-1292.	6.7	83
12	Role of cyclic voltammetry in characterizing solids: natural and synthetic manganese oxide octahedral molecular sieves. Chemistry of Materials, 1993, 5, 1395-1400.	6.7	76
13	Differences in the Electrostatic Surfaces of the Type III Secretion Needle Proteins Prgl, BsaL, and MxiH. Journal of Molecular Biology, 2007, 371, 1304-1314.	4.2	66
14	The crystal structures of the <i>Salmonella</i> type III secretion system tip protein SipD in complex with deoxycholate and chenodeoxycholate. Protein Science, 2011, 20, 75-86.	7.6	62
15	Zinc Ejection as a New Rationale for the Use of Cystamine and Related Disulfide-Containing Antiviral Agents in the Treatment of AIDS. Journal of Medicinal Chemistry, 1997, 40, 1969-1976.	6.4	58
16	Solution Structure of Monomeric BsaL, the Type III Secretion Needle Protein of Burkholderia pseudomallei. Journal of Molecular Biology, 2006, 359, 322-330.	4.2	57
17	The Zinc-dependent Redox Switch Domain of the Chaperone Hsp33 has a Novel Fold. Journal of Molecular Biology, 2004, 341, 893-899.	4.2	52
18	The Bacterial Type <scp>III</scp> Secretion System as a Target for Developing New Antibiotics. Chemical Biology and Drug Design, 2015, 85, 30-42.	3.2	45

2

Roberto N De Guzman

#	Article	IF	CITATIONS
19	The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro. PLoS ONE, 2017, 12, e0175471.	2.5	45
20	The Hantavirus Glycoprotein G1 Tail Contains Dual CCHC-type Classical Zinc Fingers. Journal of Biological Chemistry, 2009, 284, 8654-8660.	3.4	44
21	Structural Characterization of the Crimean-Congo Hemorrhagic Fever Virus Gn Tail Provides Insight into Virus Assembly. Journal of Biological Chemistry, 2011, 286, 21678-21686.	3.4	42
22	The type III secretion system needle, tip, and translocon. Protein Science, 2019, 28, 1582-1593.	7.6	40
23	NMR Model of Prgl–SipD Interaction and Its Implications in the Needle-Tip Assembly of the Salmonella Type III Secretion System. Journal of Molecular Biology, 2014, 426, 2958-2969.	4.2	36
24	NMR Characterization of the Interaction of the <i>Salmonella</i> Type III Secretion System Protein SipD and Bile Salts [,] . Biochemistry, 2010, 49, 4220-4226.	2.5	34
25	Identification of the MxiH Needle Protein Residues Responsible for Anchoring Invasion Plasmid Antigen D to the Type III Secretion Needle Tip. Journal of Biological Chemistry, 2007, 282, 32144-32151.	3.4	30
26	Characterization of the Interaction between the Salmonella Type III Secretion System Tip Protein SipD and the Needle Protein PrgI by Paramagnetic Relaxation Enhancement. Journal of Biological Chemistry, 2011, 286, 4922-4930.	3.4	30
27	The Salmonella Type III Secretion System Inner Rod Protein PrgJ Is Partially Folded. Journal of Biological Chemistry, 2012, 287, 25303-25311.	3.4	28
28	NMR Structure of the N-terminal Coiled Coil Domain of the Andes Hantavirus Nucleocapsid Protein. Journal of Biological Chemistry, 2008, 283, 28297-28304.	3.4	26
29	A protein secreted by the Salmonella type III secretion system controls needle filament assembly. ELife, 2018, 7, .	6.0	26
30	Structure of the <i>Yersinia pestis</i> tip protein LcrV refined to 1.65â€Ã resolution. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 477-481.	0.7	23
31	The Structure of the Hantavirus Zinc Finger Domain is Conserved and Represents the Only Natively Folded Region of the Gn Cytoplasmic Tail. Frontiers in Microbiology, 2011, 2, 251.	3.5	21
32	A Repulsive Electrostatic Mechanism for Protein Export through the Type III Secretion Apparatus. Biophysical Journal, 2010, 98, 452-461.	0.5	18
33	Identification and Validation of an Aspergillus nidulans Secondary Metabolite Derivative as an Inhibitor of the Musashi-RNA Interaction. Cancers, 2020, 12, 2221.	3.7	17
34	Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy. Journal of Biological Chemistry, 2017, 292, 10230-10238.	3.4	15
35	Characterization of the Binding of Hydroxyindole, Indoleacetic acid, and Morpholinoaniline to the <i>Salmonella</i> Typeâ€III Secretion System Proteins SipD and SipB. ChemMedChem, 2016, 11, 963-971.	3.2	14
36	Characterization of the <i>Shigella</i> and <i>Salmonella</i> Typeâ€III Secretion System Tip–Translocon Protein–Protein Interaction by Paramagnetic Relaxation Enhancement. ChemBioChem, 2016, 17, 745-752.	2.6	12

#	Article	IF	CITATIONS
37	Characterization of Smallâ€Molecule Scaffolds That Bind to the <i>Shigella</i> Typeâ€III Secretion System Protein IpaD. ChemMedChem, 2017, 12, 1534-1541.	3.2	12
38	Structural dissection of the extracellular moieties of the type III secretion apparatus. Molecular BioSystems, 2008, 4, 1176.	2.9	11
39	The LcrG Tip Chaperone Protein of the Yersinia pestis Type III Secretion System Is Partially Folded. Journal of Molecular Biology, 2015, 427, 3096-3109.	4.2	10
40	NMR identification of the binding surfaces involved in theSalmonellaandShigellaType III secretion tip-translocon protein-protein interactions. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1097-1107.	2.6	6
41	Nuclear Magnetic Resonance Characterization of the Type III Secretion System Tip Chaperone Protein PcrG of <i>Pseudomonas aeruginosa</i> . Biochemistry, 2015, 54, 6576-6585.	2.5	4