
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7741952/publications.pdf Version: 2024-02-01

KENII TAKIZANAA

#	Article	IF	CITATIONS
1	3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. International Journal for Numerical Methods in Fluids, 2011, 65, 207-235.	0.9	288
2	Multiscale space–time fluid–structure interaction techniques. Computational Mechanics, 2011, 48, 247-267.	2.2	242
3	Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling. Archives of Computational Methods in Engineering, 2012, 19, 171-225.	6.0	175
4	SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS. Mathematical Models and Methods in Applied Sciences, 2012, 22, .	1.7	157
5	Space–time finite element computation of complex fluid–structure interactions. International Journal for Numerical Methods in Fluids, 2010, 64, 1201-1218.	0.9	152
6	ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION. Mathematical Models and Methods in Applied Sciences, 2012, 22, .	1.7	148
7	Computational Methods for Parachute Fluid–Structure Interactions. Archives of Computational Methods in Engineering, 2012, 19, 125-169.	6.0	148
8	Exactly Conservative Semi-Lagrangian Scheme for Multi-dimensional Hyperbolic Equations with Directional Splitting Technique. Journal of Computational Physics, 2001, 174, 171-207.	1.9	134
9	Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Computational Mechanics, 2011, 48, 647-657.	2.2	129
10	Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Computational Mechanics, 2014, 53, 1-15.	2.2	129
11	Space-Time Computational Techniques for the Aerodynamics of Flapping Wings. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	128
12	Stabilized space–time computation of wind-turbine rotor aerodynamics. Computational Mechanics, 2011, 48, 333-344.	2.2	126
13	Space–time interface-tracking with topology change (ST-TC). Computational Mechanics, 2014, 54, 955-971.	2.2	124
14	Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Computational Mechanics, 2012, 50, 743-760.	2.2	120
15	METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION. Mathematical Models and Methods in Applied Sciences, 2013, 23, 307-338.	1.7	119
16	Multiscale space–time methods for thermo-fluid analysis of a ground vehicle and its tires. Mathematical Models and Methods in Applied Sciences, 2015, 25, 2227-2255.	1.7	119
17	CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION. Mathematical Models and Methods in Applied Sciences, 2013, 23, 215-221.	1.7	118
18	Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Computational Mechanics, 2012, 50, 761-778.	2.2	112

#	Article	IF	CITATIONS
19	ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Mathematical Models and Methods in Applied Sciences, 2014, 24, 2437-2486.	1.7	112
20	Space–time finite element computation of arterial fluid–structure interactions with patientâ€specific data. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 101-116.	1.0	109
21	Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Computational Mechanics, 2013, 52, 1351-1364.	2.2	109
22	Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods. Archives of Computational Methods in Engineering, 2014, 21, 359-398.	6.0	108
23	Space–time fluid mechanics computation of heart valve models. Computational Mechanics, 2014, 54, 973-986.	2.2	108
24	Space–time VMS method for flow computations with slip interfaces (ST-SI). Mathematical Models and Methods in Applied Sciences, 2015, 25, 2377-2406.	1.7	108
25	Engineering Analysis and Design with ALE-VMS and Space–Time Methods. Archives of Computational Methods in Engineering, 2014, 21, 481-508.	6.0	105
26	Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Computational Mechanics, 2015, 55, 1131-1141.	2.2	103
27	Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Computational Mechanics, 2014, 54, 213-233.	2.2	102
28	Turbocharger flow computations with the Space–Time Isogeometric Analysis (ST-IGA). Computers and Fluids, 2017, 142, 15-20.	1.3	100
29	Computational engineering analysis with the new-generation space–time methods. Computational Mechanics, 2014, 54, 193-211.	2.2	99
30	Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Computational Mechanics, 2013, 51, 1061-1073.	2.2	98
31	Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Computational Mechanics, 2010, 46, 31-41.	2.2	96
32	Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Computational Mechanics, 2012, 50, 675-686.	2.2	92
33	Space–time fluid–structure interaction modeling of patientâ€specific cerebral aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 1665-1710.	1.0	91
34	Fluid–structure interaction modeling of parachute clusters. International Journal for Numerical Methods in Fluids, 2011, 65, 286-307.	0.9	89
35	Multiscale sequentially-coupled arterial FSI technique. Computational Mechanics, 2010, 46, 17-29.	2.2	88
36	Ram-air parachute structural and fluid mechanics computations with the Space–Time Isogeometric Analysis (ST-IGA). Computers and Fluids, 2016, 141, 191-200.	1.3	87

#	Article	IF	CITATIONS
37	SPACE–TIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS. Mathematical Models and Methods in Applied Sciences, 2013, 23, 223-248.	1.7	85
38	Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Computational Mechanics, 2012, 50, 835-854.	2.2	84
39	Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods. Computers and Fluids, 2017, 158, 176-188.	1.3	84
40	Computer modeling techniques for flapping-wing aerodynamics of a locust. Computers and Fluids, 2013, 85, 125-134.	1.3	82
41	Space–time computation techniques with continuous representation in time (ST-C). Computational Mechanics, 2014, 53, 91-99.	2.2	82
42	Computational thermo-fluid analysis of a disk brake. Computational Mechanics, 2016, 57, 965-977.	2.2	82
43	Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Computational Mechanics, 2011, 48, 345-364.	2.2	81
44	FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Computational Mechanics, 2014, 54, 1035-1045.	2.2	81
45	Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations. Computational Mechanics, 2018, 62, 1169-1186.	2.2	81
46	Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Mathematical Models and Methods in Applied Sciences, 2017, 27, 771-806.	1.7	80
47	FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Computational Mechanics, 2014, 54, 1203-1220.	2.2	76
48	Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Computational Mechanics, 2019, 63, 301-321.	2.2	76
49	Patientâ€specific arterial fluid–structure interaction modeling of cerebral aneurysms. International Journal for Numerical Methods in Fluids, 2011, 65, 308-323.	0.9	75
50	FSI modeling of the Orion spacecraft drogue parachutes. Computational Mechanics, 2015, 55, 1167-1179.	2.2	75
51	New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. Mathematical Models and Methods in Applied Sciences, 2015, 25, 2217-2226.	1.7	72
52	Special methods for aerodynamic-moment calculations from parachute FSI modeling. Computational Mechanics, 2015, 55, 1059-1069.	2.2	70
53	Higher-order schemes with CIP method and adaptive Soroban grid towards mesh-free scheme. Journal of Computational Physics, 2004, 194, 57-77.	1.9	69
54	Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Computers and Fluids, 2017, 158, 189-200.	1.3	69

#	Article	IF	CITATIONS
55	Space–Time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Computers and Fluids, 2016, 141, 124-134.	1.3	68
56	Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless soroban grids. Computational Mechanics, 2007, 40, 167-183.	2.2	66
57	Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. International Journal for Numerical Methods in Fluids, 2011, 65, 271-285.	0.9	66
58	Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Computational Mechanics, 2014, 54, 1461-1476.	2.2	64
59	Tire aerodynamics with actual tire geometry, road contact and tire deformation. Computational Mechanics, 2019, 63, 1165-1185.	2.2	63
60	Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method. Computational Mechanics, 2020, 65, 1167-1187.	2.2	63
61	Computational analysis of wind-turbine blade rain erosion. Computers and Fluids, 2016, 141, 175-183.	1.3	61
62	Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization. Computers and Fluids, 2019, 179, 790-798.	1.3	58
63	Computational analysis of flow-driven string dynamics in turbomachinery. Computers and Fluids, 2017, 142, 109-117.	1.3	57
64	A General-Purpose NURBS Mesh Generation Method for Complex Geometries. Modeling and Simulation in Science, Engineering and Technology, 2018, , 399-434.	0.4	57
65	Turbocharger turbine and exhaust manifold flow computation with the Space–Time Variational Multiscale Method and Isogeometric Analysis. Computers and Fluids, 2019, 179, 764-776.	1.3	57
66	Ventricle-valve-aorta flow analysis with the Space–Time Isogeometric Discretization and Topology Change. Computational Mechanics, 2020, 65, 1343-1363.	2.2	56
67	Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping. Computational Mechanics, 2019, 63, 681-700.	2.2	54
68	Space–time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Computational Mechanics, 2019, 64, 1403-1419.	2.2	53
69	Aorta Flow Analysis and Heart Valve Flow and Structure Analysis. Modeling and Simulation in Science, Engineering and Technology, 2018, , 29-89.	0.4	51
70	Space–time computations in practical engineering applications: a summary of the 25-year history. Computational Mechanics, 2019, 63, 747-753.	2.2	50
71	Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method. Computational Mechanics, 2021, 67, 57-84.	2.2	50
72	Recent Advances in ALE-VMS and ST-VMS Computational Aerodynamic and FSI Analysis of Wind Turbines. Modeling and Simulation in Science, Engineering and Technology, 2018, , 253-336.	0.4	48

#	Article	IF	CITATIONS
73	Space–time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Computational Mechanics, 2019, 64, 1699-1718.	2.2	48
74	Estimation of element-based zero-stress state for arterial FSI computations. Computational Mechanics, 2014, 54, 895-910.	2.2	47
75	Heart Valve Flow Computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) Method and Isogeometric Analysis (IGA). Lecture Notes in Applied and Computational Mechanics, 2018, , 77-99.	2.0	47
76	Methods for computation of flow-driven string dynamics in a pump and residence time. Mathematical Models and Methods in Applied Sciences, 2019, 29, 839-870.	1.7	47
77	Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis. Archives of Computational Methods in Engineering, 2019, 26, 1059-1099.	6.0	47
78	Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Computational Mechanics, 2010, 46, 83-89.	2.2	46
79	Space–Time Computational Analysis of Tire Aerodynamics with Actual Geometry, Road Contact, and Tire Deformation. Modeling and Simulation in Science, Engineering and Technology, 2018, , 337-376.	0.4	46
80	A variational multiscale method for particle-cloud tracking in turbomachinery flows. Computational Mechanics, 2014, 54, 1191-1202.	2.2	45
81	Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. International Journal for Numerical Methods in Fluids, 2011, 65, 135-149.	0.9	44
82	Space–time Isogeometric flow analysis with built-in Reynolds-equation limit. Mathematical Models and Methods in Applied Sciences, 2019, 29, 871-904.	1.7	44
83	A Comparative Study Based on Patient-Specific Fluid-Structure Interaction Modeling of Cerebral Aneurysms. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	43
84	Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Computational Mechanics, 2014, 54, 1047-1053.	2.2	43
85	New Directions in Space–Time Computational Methods. Modeling and Simulation in Science, Engineering and Technology, 2016, , 159-178.	0.4	41
86	A Geometrical-Characteristics Study in Patient-Specific FSI Analysis of Blood Flow in the Thoracic Aorta. Modeling and Simulation in Science, Engineering and Technology, 2016, , 379-386.	0.4	40
87	A stabilized ALE method for computational fluid–structure interaction analysis of passive morphing in turbomachinery. Mathematical Models and Methods in Applied Sciences, 2019, 29, 967-994.	1.7	40
88	Medical-image-based aorta modeling with zero-stress-state estimation. Computational Mechanics, 2019, 64, 249-271.	2.2	40
89	Fluid-Structure Interaction Modeling of Spacecraft Parachutes for Simulation-Based Design. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	39
90	Aorta modeling with the element-based zero-stress state and isogeometric discretization. Computational Mechanics, 2017, 59, 265-280.	2.2	39

#	Article	IF	CITATIONS
91	Computational analysis of performance deterioration of a wind turbine blade strip subjected to environmental erosion. Computational Mechanics, 2019, 64, 1133-1153.	2.2	37
92	Anatomically realistic lumen motion representation in patient-specific space–time isogeometric flow analysis of coronary arteries with time-dependent medical-image data. Computational Mechanics, 2020, 65, 395-404.	2.2	37
93	Computational Cardiovascular Flow Analysis with the Variational Multiscale Methods. Khoa HỀ ứng Dụng, 2019, 3, 366.	1.5	37
94	Space–Time Variational Multiscale Isogeometric Analysis of a tsunami-shelter vertical-axis wind turbine. Computational Mechanics, 2020, 66, 1443-1460.	2.2	36
95	A parallel sparse algorithm targeting arterial fluid mechanics computations. Computational Mechanics, 2011, 48, 377-384.	2.2	35
96	Aorta zero-stress state modeling with T-spline discretization. Computational Mechanics, 2019, 63, 1315-1331.	2.2	35
97	Element length calculation in B-spline meshes for complex geometries. Computational Mechanics, 2020, 65, 1085-1103.	2.2	35
98	Computational analysis of flow-driven string dynamics in a pump and residence time calculation. IOP Conference Series: Earth and Environmental Science, 0, 240, 062014.	0.2	34
99	Conservative form of interpolated differential operator scheme for compressible and incompressible fluid dynamics. Journal of Computational Physics, 2008, 227, 2263-2285.	1.9	32
100	A node-numbering-invariant directional length scale for simplex elements. Mathematical Models and Methods in Applied Sciences, 2019, 29, 2719-2753.	1.7	32
101	Estimation of Element-Based Zero-Stress State in Arterial FSI Computations with Isogeometric Wall Discretization. Lecture Notes in Applied and Computational Mechanics, 2018, , 101-122.	2.0	32
102	Computational analysis methods for complex unsteady flow problems. Mathematical Models and Methods in Applied Sciences, 2019, 29, 825-838.	1.7	30
103	A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state. Computational Mechanics, 2020, 65, 1567-1591.	2.2	30
104	The next generation CIP as a conservative semi-Lagrangian solver for solid, liquid and gas. Journal of Computational and Applied Mathematics, 2002, 149, 267-277.	1.1	26
105	Challenge of CIP as a universal solver for solid, liquid and gas. International Journal for Numerical Methods in Fluids, 2005, 47, 655-676.	0.9	26
106	Wind Turbine and Turbomachinery Computational Analysis with the ALE and Space-Time Variational Multiscale Methods and Isogeometric Discretization. Khoa Há»c ứng Dụng, 2020, 4, 1.	1.5	26
107	Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. International Journal for Numerical Methods in Fluids, 2007, 54, 1011-1019.	0.9	25
108	U-duct turbulent-flow computation with the ST-VMS method and isogeometric discretization. Computational Mechanics, 2021, 67, 823-843.	2.2	25

#	Article	IF	CITATIONS
109	Computational Flow Analysis in Aerospace, Energy and Transportation Technologies with the Variational Multiscale Methods. Khoa Há» ${f c}$ á» ©ng Dụng, 2020, 4, 83.	1.5	24
110	Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact. Journal of Mechanics, 2022, 38, 185-194.	0.7	24
111	Space–time VMS isogeometric analysis of the Taylor–Couette flow. Computational Mechanics, 2021, 67, 1515-1541.	2.2	23
112	Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact. Journal of Mechanics, 2022, 38, 77-87.	0.7	22
113	Space–time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. Computational Mechanics, 2022, 70, 49-72.	2.2	22
114	Element-splitting-invariant local-length-scale calculation in B-Spline meshes for complex geometries. Mathematical Models and Methods in Applied Sciences, 2020, 30, 2139-2174.	1.7	21
115	Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework. Computational Mechanics, 2021, 68, 113-130.	2.2	21
116	Computational Cardiovascular Analysis with the Variational Multiscale Methods and Isogeometric Discretization. Modeling and Simulation in Science, Engineering and Technology, 2020, , 151-193.	0.4	21
117	ALE and Space–Time Variational Multiscale Isogeometric Analysis of Wind Turbines and Turbomachinery. Modeling and Simulation in Science, Engineering and Technology, 2020, , 195-233.	0.4	21
118	Multi-dimensional semi-Lagrangian scheme that guarantees exact conservation. Computer Physics Communications, 2002, 148, 137-159.	3.0	20
119	Variational Multiscale Flow Analysis in Aerospace, Energy and Transportation Technologies. Modeling and Simulation in Science, Engineering and Technology, 2020, , 235-280.	0.4	19
120	Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: II. Spatial and temporal resolution. Computational Mechanics, 2021, 68, 175-184.	2.2	18
121	A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion. Computational Mechanics, 2021, 67, 413-434.	2.2	17
122	Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—An overview. International Journal for Numerical Methods in Fluids, 2007, 54, 841-853.	0.9	16
123	SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades. Modeling and Simulation in Science, Engineering and Technology, 2016, , 77-96.	0.4	14
124	Space–Time Flow Computation withÂContact Between theÂMoving Solid Surfaces. , 2022, , 517-525.		14
125	A hyperelastic extended Kirchhoff–Love shell model with out-of-plane normal stress: I. Out-of-plane deformation. Computational Mechanics, 2022, 70, 247-280.	2.2	14
126	Space–Time Computational FSI and Flow Analysis: 2004 and Beyond. , 2022, , 537-544.		13

#	Article	IF	CITATIONS
127	Wind turbine wake computation with the ST-VMS method and isogeometric discretization: Directional preference in spatial refinement. Computational Mechanics, 2022, 69, 1031-1040.	2.2	12
128	Computational analysis of particle-laden-airflow erosion and experimental verification. Computational Mechanics, 2020, 65, 1549-1565.	2.2	11
129	Simulation and experiment on swimming fish and skimmer by CIP method. Computers and Structures, 2005, 83, 397-408.	2.4	10
130	Bringing them Down Safely. Mechanical Engineering, 2012, 134, 34-37.	0.0	8
131	Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Methods. Computational Methods in Applied Sciences (Springer), 2014, , 71-102.	0.1	6
132	Computational fluid mechanics and fluid–structure interaction. Computational Mechanics, 2012, 50, 665-665.	2.2	4
133	Main aspects of the space–time computational FSI techniques and examples of challenging problems solved. Mechanical Engineering Reviews, 2014, 1, CM0005-CM0005.	4.7	3
134	Computational Engineering Analysis and Design with ALE-VMS and ST Methods. Computational Methods in Applied Sciences (Springer), 2014, , 321-353.	0.1	3
135	Special issue on computational fluid mechanics and fluid–structure interaction. Computational Mechanics, 2011, 48, 245-245.	2.2	2
136	Fluid–Structure Interaction Modeling of Patient-Specific Cerebral Aneurysms. Lecture Notes in Computational Vision and Biomechanics, 2014, , 25-45.	0.5	2
137	Biomedical fluid mechanics and fluid–structure interaction. Computational Mechanics, 2014, 54, 893-893.	2.2	2
138	Fluid–structure interaction. Computational Mechanics, 2015, 55, 1057-1058.	2.2	2
139	Experimental Research on Rotating Skimmer. , 2003, , 515.		1
140	A New Paradigm of Computer Graphics by Universal Solver for Solid, Liquid and Gas. JSME International Journal Series B, 2004, 47, 656-663.	0.3	1
141	The Analysis of Electromagnetic Waves Using CIP Scheme with Soroban Grid. , 2006, , 141-146.		1
142	Anatomically realistic lumen motion representation in patient-specific space–time isogeometric flow analysis of coronary arteries with time-dependent medical-image data. , 2020, 65, 395.		1
143	Element length calculation in B-spline meshes for complex geometries. , 2020, 65, 1085.		1
144	Three-Phase Flow Calculation With Conservative Semi-Lagrangian CIP Method. , 2002, , 467.		0

#	Article	IF	CITATIONS
145	Three-Dimensional Simulation of Skimmer on Water. , 2003, , 509.		Ο
146	Fluid-Structure Interaction Modeling of Ringsail Parachute Clusters. , 2011, , .		0
147	Special Issue on Computational Fluid Mechanics and Fluid–Structure Interaction Preface. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	Ο
148	Finite elements in flow problems 2015, Taiwan. Computers and Fluids, 2017, 142, 1-2.	1.3	0
149	Recent Advances of Multi-phase Flow Computation with the Adaptive Soroban-grid Cubic Interpolated Propagation (CIP) Method. , 2009, , 29-43.		Ο
150	2A23 Arterial Wall Modeling and Medical Image Mapping Based on Element-Based Zero-Stress State Estimation Method. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 315-316.	0.0	0