
## Timothy G Jenkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7741648/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Age-Associated Sperm DNA Methylation Alterations: Possible Implications in Offspring Disease<br>Susceptibility. PLoS Genetics, 2014, 10, e1004458.                             | 1.5 | 238       |
| 2  | Obesity, male infertility, and the sperm epigenome. Fertility and Sterility, 2017, 107, 848-859.                                                                               | 0.5 | 210       |
| 3  | The sperm epigenome and potential implications for the developing embryo. Reproduction, 2012, 143, 727-734.                                                                    | 1.1 | 195       |
| 4  | Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertility and Sterility, 2015, 104, 1388-1397.e5.                                            | 0.5 | 153       |
| 5  | Cigarette smoking significantly alters sperm <scp>DNA</scp> methylation patterns. Andrology, 2017, 5, 1089-1099.                                                               | 1.9 | 131       |
| 6  | The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction.<br>International Journal of Molecular Sciences, 2020, 21, 5377.                   | 1.8 | 123       |
| 7  | Decreased fecundity and sperm DNA methylation patterns. Fertility and Sterility, 2016, 105, 51-57.e3.                                                                          | 0.5 | 102       |
| 8  | Paternal aging and associated intraindividual alterations of global sperm 5-methylcytosine and 5-hydroxymethylcytosine levels. Fertility and Sterility, 2013, 100, 945-951.e2. | 0.5 | 93        |
| 9  | The Sperm Epigenome: Implications for the Embryo. Advances in Experimental Medicine and Biology, 2014, 791, 53-66.                                                             | 0.8 | 87        |
| 10 | The paternal epigenome and embryogenesis: poising mechanisms for development. Asian Journal of Andrology, 2011, 13, 76-80.                                                     | 0.8 | 82        |
| 11 | Diet and sperm quality: Nutrients, foods and dietary patterns. Reproductive Biology, 2019, 19, 219-224.                                                                        | 0.9 | 80        |
| 12 | Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications.<br>Systems Biology in Reproductive Medicine, 2017, 63, 69-76.         | 1.0 | 73        |
| 13 | The role of miRNAs in male human reproduction: a systematic review. Andrology, 2020, 8, 7-26.                                                                                  | 1.9 | 72        |
| 14 | Male adiposity, sperm parameters and reproductive hormones: An updated systematic review and collaborative metaâ€analysis. Obesity Reviews, 2021, 22, e13082.                  | 3.1 | 68        |
| 15 | Paternal germ line aging: DNA methylation age prediction from human sperm. BMC Genomics, 2018, 19, 763.                                                                        | 1.2 | 67        |
| 16 | Teratozoospermia and asthenozoospermia are associated with specific epigenetic signatures.<br>Andrology, 2016, 4, 843-849.                                                     | 1.9 | 56        |
| 17 | The impact of ejaculatory abstinence on semen analysis parameters: a systematic review. Journal of Assisted Reproduction and Genetics, 2018, 35, 213-220.                      | 1.2 | 54        |
| 18 | Dynamic alterations in the paternal epigenetic landscape following fertilization. Frontiers in Genetics, 2012, 3, 143.                                                         | 1.1 | 51        |

TIMOTHY G JENKINS

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Intra-sample heterogeneity of sperm DNA methylation. Molecular Human Reproduction, 2015, 21, 313-319.                                                                                                              | 1.3 | 44        |
| 20 | The Expression of miRNAs in Human Ovaries, Oocytes, Extracellular Vesicles, and Early Embryos: A<br>Systematic Review. Cells, 2019, 8, 1564.                                                                       | 1.8 | 39        |
| 21 | Sperm epigenetics and aging. Translational Andrology and Urology, 2018, 7, S328-S335.                                                                                                                              | 0.6 | 35        |
| 22 | The Sperm Epigenome, Male Aging, and Potential Effects on the Embryo. Advances in Experimental<br>Medicine and Biology, 2015, 868, 81-93.                                                                          | 0.8 | 26        |
| 23 | Differential DNA methylation pattern and sperm quality in men with varicocele. Fertility and Sterility, 2020, 114, 770-778.                                                                                        | 0.5 | 22        |
| 24 | Supplementation of cryomedium with ascorbic acid–2-glucoside (AA2G) improves human sperm<br>post-thaw motility. Fertility and Sterility, 2011, 95, 2001-2004.                                                      | 0.5 | 21        |
| 25 | Age-associated sperm DNA methylation patterns do not directly persist trans-generationally.<br>Epigenetics and Chromatin, 2019, 12, 74.                                                                            | 1.8 | 21        |
| 26 | Impacts of Abstinence Time on Semen Parameters in a Large Population-based Cohort of Subfertile Men.<br>Urology, 2017, 108, 90-95.                                                                                 | 0.5 | 19        |
| 27 | Epigenetics, infertility, and cancer: future directions. Fertility and Sterility, 2018, 109, 27-32.                                                                                                                | 0.5 | 18        |
| 28 | Young women with poor ovarian response exhibit epigenetic age acceleration based on evaluation of white blood cells using a DNA methylation-derived age prediction model. Human Reproduction, 2020, 35, 2579-2588. | 0.4 | 18        |
| 29 | Harnessing the full potential of reproductive genetics and epigenetics for male infertility in the era of "big data― Fertility and Sterility, 2020, 113, 478-488.                                                  | 0.5 | 18        |
| 30 | DNA methylation among firefighters. PLoS ONE, 2019, 14, e0214282.                                                                                                                                                  | 1.1 | 15        |
| 31 | Pre-screening method for somatic cell contamination in human sperm epigenetic studies. Systems<br>Biology in Reproductive Medicine, 2018, 64, 146-155.                                                             | 1.0 | 13        |
| 32 | NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. PLoS Genetics, 2020,<br>16, e1008756.                                                                                              | 1.5 | 11        |
| 33 | Simulated Wildfire Smoke Significantly Alters Sperm DNA Methylation Patterns in a Murine Model.<br>Toxics, 2021, 9, 199.                                                                                           | 1.6 | 11        |
| 34 | The impact of zinc and folic acid supplementation on sperm DNA methylation: results from the folic acid and zinc supplementation randomized clinical trial (FAZST). Fertility and Sterility, 2022, 117, 75-85.     | 0.5 | 10        |
| 35 | Microfluidic System for Rapid Isolation of Sperm From Microdissection TESE Specimens. Urology, 2020, 140, 70-76.                                                                                                   | 0.5 | 9         |
| 36 | Sperm DNA methylation changes after shortâ€ŧerm nut supplementation in healthy men consuming a<br>Westernâ€style diet. Andrology, 2021, 9, 260-268.                                                                | 1.9 | 9         |

TIMOTHY G JENKINS

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The combined effect of obesity and aging on human sperm DNA methylation signatures: inclusion of BMI in the paternal germ line age prediction model. Scientific Reports, 2020, 10, 15409.                                          | 1.6 | 8         |
| 38 | Transgenerational Epigenetics. Urologic Clinics of North America, 2020, 47, 219-225.                                                                                                                                               | 0.8 | 8         |
| 39 | Serum dioxin levels and sperm DNA methylation age: Findings in Vietnam war veterans exposed to<br>Agent Orange. Reproductive Toxicology, 2020, 96, 27-35.                                                                          | 1.3 | 7         |
| 40 | Proton-pump inhibitor use does not affect semen quality in subfertile men. Asian Journal of<br>Andrology, 2018, 20, 290.                                                                                                           | 0.8 | 7         |
| 41 | Population-based Semen Analysis Results and Fertility Among Patients With Inflammatory Bowel<br>Disease: Results From Subfertility Health Assisted Reproduction and the Environment (SHARE) Study.<br>Urology, 2017, 107, 114-119. | 0.5 | 6         |
| 42 | Thermo Stability of DNA Methylation Marks in Human Sperm. Journal of Genetics and Genome Research, 2017, 4, .                                                                                                                      | 0.3 | 6         |
| 43 | How the Father Might Epigenetically Program the Risk for Developmental Origins of Health and Disease Effects in His Offspring. , 2016, , 361-375.                                                                                  |     | 5         |
| 44 | Associations of single nucleotide polymorphisms in the Pygo2 coding sequence with idiopathic oligospermia and azoospermia. Genetics and Molecular Research, 2015, 14, 9053-9061.                                                   | 0.3 | 4         |
| 45 | Assays Used in the Study of Sperm Nuclear Proteins. , 2011, , 233-241.                                                                                                                                                             |     | 3         |
| 46 | Epigenetic mechanisms within the sperm epigenome and their diagnostic potential. Best Practice and<br>Research in Clinical Endocrinology and Metabolism, 2020, 34, 101481.                                                         | 2.2 | 3         |
| 47 | Epigenetics and Male Infertility. , 2020, , 139-146.                                                                                                                                                                               |     | 2         |
| 48 | The Role of Reproductive Genetics in Modern Andrology. , 2018, , 23-38.                                                                                                                                                            |     | 1         |
| 49 | Semen parameter decline with advancing age: a cause for concern?. Fertility and Sterility, 2018, 110, 54-55.                                                                                                                       | 0.5 | 1         |
| 50 | Microfluidics: a way to interrogate a single sperm?. Fertility and Sterility, 2019, 112, 808.                                                                                                                                      | 0.5 | 1         |
| 51 | Semen characteristics and pregnancy loss: an important step in addressing a complex problem.<br>Fertility and Sterility, 2017, 108, 598-599.                                                                                       | 0.5 | 1         |
| 52 | Assessment of seminal cellâ€free DNA as a potential contaminate in studies of human sperm DNA<br>methylation. Andrology, 2022, , .                                                                                                 | 1.9 | 1         |
| 53 | Suplementation of ascorbic acid 2-glucoside (AA2G) to cryomedia and its effects on post-thaw human sperm motility. Fertility and Sterility, 2010, 94, S146-S147.                                                                   | 0.5 | 0         |
| 54 | Intra-individual variability of global sperm 5-methylcytosine and 5-hydroxymethylcytosine levels<br>between ejaculates. Fertility and Sterility, 2012, 98, S13-S14.                                                                | 0.5 | 0         |

TIMOTHY G JENKINS

| #  | Article                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Regional enrichment of altered sperm DNA methylation marks associated with paternal aging. Fertility and Sterility, 2013, 100, S88.                     | 0.5 | 0         |
| 56 | Transgenerational effects of DNA methylation inhibitor treatment to male mice. Fertility and Sterility, 2014, 102, e198.                                | 0.5 | 0         |
| 57 | MicroRNA: a step beyond bulk seminal parameters?. Fertility and Sterility, 2015, 104, 554.                                                              | 0.5 | 0         |
| 58 | The Sperm Epigenome. , 0, , 230-239.                                                                                                                    |     | 0         |
| 59 | Epigenetics and Sperm Abnormalities. , 2018, , 245-249.                                                                                                 |     | Ο         |
| 60 | AUTHOR REPLY. Urology, 2020, 140, 75-76.                                                                                                                | 0.5 | 0         |
| 61 | Aging of male and female gametes. , 2021, , 253-267.                                                                                                    |     | 0         |
| 62 | The Aging Male and Impact on Offspring. , 2013, , 17-29.                                                                                                |     | 0         |
| 63 | Assays Used in the Study of Sperm Nuclear Proteins. , 2013, , 363-375.                                                                                  |     | 0         |
| 64 | The Sperm Epigenome and Potential Implications for the Developing Embryo. , 2020, , 173-185.                                                            |     | 0         |
| 65 | Sperm epigenetics: The future of precision medicine in male infertility. , 2022, , 369-380.                                                             |     | 0         |
| 66 | NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.                                                   |     | 0         |
| 67 | NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.                                                   |     | Ο         |
| 68 | NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.                                                   |     | 0         |
| 69 | NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.                                                   |     | Ο         |
| 70 | NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.                                                   |     | 0         |
| 71 | NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. , 2020, 16, e1008756.                                                   |     | Ο         |
| 72 | Different human placental epigenetics changes in pregnancies affected with preeclampsia and intrauterine growth restriction. FASEB Journal, 2022, 36, . | 0.2 | 0         |