
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/774152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energetics of Hydrogen Bond Network Rearrangements in Liquid Water. Science, 2004, 306, 851-853.	12.6	476
2	Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO. Science, 1994, 266, 398-404.	12.6	384
3	Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14171-14174.	7.1	369
4	Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations. Atmospheric Chemistry and Physics, 2008, 8, 6117-6136.	4.9	369
5	Isotopic fractionation of water during evaporation. Journal of Geophysical Research, 2003, 108, .	3.3	365
6	Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmospheric Chemistry and Physics, 2012, 12, 7779-7795.	4.9	326
7	Why do models overestimate surface ozone in the Southeast United States?. Atmospheric Chemistry and Physics, 2016, 16, 13561-13577.	4.9	320
8	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.	4.9	307
9	Airborne measurement of OH reactivity during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 163-173.	4.9	293
10	Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow. Journal of Geophysical Research, 2007, 112, .	3.3	279
11	Organic nitrate and secondary organic aerosol yield from NO ₃ oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model. Atmospheric Chemistry and Physics, 2009, 9, 1431-1449.	4.9	277
12	Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1516-1521.	7.1	269
13	Trends in OMI NO ₂ observations over the United States: effects of emission control technology and the economic recession. Atmospheric Chemistry and Physics, 2012, 12, 12197-12209.	4.9	267
14	Evidence for NO <i> _x </i> Control over Nighttime SOA Formation. Science, 2012, 337, 1210-1212.	12.6	266
15	A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. Journal of Geophysical Research, 2002, 107, ACH 4-1-ACH 4-14.	3.3	242
16	Tropospheric emissions: Monitoring of pollution (TEMPO). Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186, 17-39.	2.3	239
17	Atmospheric NO2:Â In Situ Laser-Induced Fluorescence Detection at Parts per Trillion Mixing Ratios. Analytical Chemistry, 2000, 72, 528-539.	6.5	237
18	Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 9739-9760.	4.9	234

#	Article	IF	CITATIONS
19	Chemistry of hydrogen oxide radicals (HO _x) in the Arctic troposphere in spring. Atmospheric Chemistry and Physics, 2010, 10, 5823-5838.	4.9	220
20	Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,256.	3.3	213
21	Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophysical Research Letters, 2015, 42, 653-664.	4.0	212
22	Insights into hydroxyl measurements and atmospheric oxidation in a California forest. Atmospheric Chemistry and Physics, 2012, 12, 8009-8020.	4.9	211
23	An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol. Chemical Reviews, 2013, 113, 5848-5870.	47.7	211
24	Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields. Atmospheric Chemistry and Physics, 2009, 9, 6685-6703.	4.9	208
25	Ozone production rates as a function of NOxabundances and HOxproduction rates in the Nashville urban plume. Journal of Geophysical Research, 2002, 107, ACH 7-1.	3.3	207
26	Observational constraints on the chemistry of isoprene nitrates over the eastern United States. Journal of Geophysical Research, 2007, 112, .	3.3	200
27	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	3.3	199
28	Determination of an improved intermolecular global potential energy surface for Ar–H2O from vibration–rotation–tunneling spectroscopy. Journal of Chemical Physics, 1993, 98, 6007-6030.	3.0	181
29	Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America. Journal of Geophysical Research, 2006, 111, .	3.3	181
30	Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO ₃ Oxidation of Biogenic Hydrocarbons. Environmental Science & Technology, 2014, 48, 11944-11953.	10.0	178
31	Temperature and Recent Trends in the Chemistry of Continental Surface Ozone. Chemical Reviews, 2015, 115, 3898-3918.	47.7	176
32	A Preliminary Synthesis of Modeled Climate Change Impacts on U.S. Regional Ozone Concentrations. Bulletin of the American Meteorological Society, 2009, 90, 1843-1864.	3.3	175
33	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US, Atmospheric Chemistry and Physics, 2016, 16, 5969-5991.	4.9	173
34	Experimental determination of dipole moments for molecular ions: Improved measurements for ArH+. Journal of Chemical Physics, 1989, 90, 1358-1361.	3.0	168
35	The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bulletin of the American Meteorological Society, 2015, 96, 1281-1309.	3.3	165
36	HO _{<i>x</i>} chemistry during INTEXâ€A 2004: Observation, model calculation, and comparison with previous studies. Journal of Geophysical Research, 2008, 113, .	3.3	163

#	Article	IF	CITATIONS
37	The weekend effect within and downwind of Sacramento – Part 1: Observations of ozone, nitrogen oxides, and VOC reactivity. Atmospheric Chemistry and Physics, 2007, 7, 5327-5339.	4.9	161
38	Influence of future climate and emissions on regional air quality in California. Journal of Geophysical Research, 2006, 111, .	3.3	160
39	Effects of Alkali Metal Halide Salts on the Hydrogen Bond Network of Liquid Water. Journal of Physical Chemistry B, 2005, 109, 7046-7052.	2.6	159
40	On the observed response of ozone to NO _x and VOC reactivity reductions in San Joaquin Valley California 1995–present. Atmospheric Chemistry and Physics, 2012, 12, 8323-8339.	4.9	155
41	Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets. Journal of the American Chemical Society, 2006, 128, 12892-12898.	13.7	150
42	Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2013, 13, 8585-8605.	4.9	150
43	Effects of model resolution on the interpretation of satellite NO ₂ observations. Atmospheric Chemistry and Physics, 2011, 11, 11647-11655.	4.9	142
44	A high spatial resolution retrieval of NO ₂ column densities from OMI: method and evaluation. Atmospheric Chemistry and Physics, 2011, 11, 8543-8554.	4.9	133
45	Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions. Atmospheric Environment, 2010, 44, 4553-4564.	4.1	131
46	Vibration-rotation-tunneling spectroscopy of the van der Waals bond: a new look at intermolecular forces. The Journal of Physical Chemistry, 1992, 96, 1024-1040.	2.9	127
47	Direct observation of changing NO <i> _x </i> lifetime in North American cities. Science, 2019, 366, 723-727.	12.6	126
48	Organic nitrate aerosol formation via NO ₃ + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 13377-13392.	4.9	124
49	SOA from limonene: role of NO ₃ in its generation and degradation. Atmospheric Chemistry and Physics, 2011, 11, 3879-3894.	4.9	123
50	Comparison of tropospheric NO ₂ from in situ aircraft measurements with nearâ€realâ€time and standard product data from OMI. Journal of Geophysical Research, 2008, 113, .	3.3	122
51	Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6809-6812.	7.1	121
52	Effects of Cations on the Hydrogen Bond Network of Liquid Water:Â New Results from X-ray Absorption Spectroscopy of Liquid Microjets. Journal of Physical Chemistry B, 2006, 110, 5301-5309.	2.6	119
53	Direct Measurements of the Convective Recycling of the Upper Troposphere. Science, 2007, 315, 816-820.	12.6	114
54	Chemical evolution of the Sacramento urban plume: Transport and oxidation. Journal of Geophysical Research, 2002, 107, ACH 3-1-ACH 3-15.	3.3	113

#	Article	IF	CITATIONS
55	On alkyl nitrates, O3, and the "missing NOy― Journal of Geophysical Research, 2003, 108, .	3.3	113
56	Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network. Journal of Geophysical Research, 2006, 111, .	3.3	113
57	Observational Insights into Aerosol Formation from Isoprene. Environmental Science & Technology, 2013, 47, 11403-11413.	10.0	113
58	Tunable far infrared laser spectroscopy of van der Waals bonds: Vibration–rotation–tunneling spectra of Ar–H2O. Journal of Chemical Physics, 1988, 89, 4494-4504.	3.0	112
59	Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006. Atmospheric Chemistry and Physics, 2009, 9, 2141-2156.	4.9	108
60	Space-based Constraints on Spatial and Temporal Patterns of NO _{<i>x</i>} Emissions in California, 2005â^2008. Environmental Science & Technology, 2010, 44, 3608-3615.	10.0	108
61	Comparison of MkIV balloon and ER-2 aircraft measurements of atmospheric trace gases. Journal of Geophysical Research, 1999, 104, 26779-26790.	3.3	106
62	Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality. Atmospheric Chemistry and Physics, 2013, 13, 8439-8455.	4.9	106
63	Multidimensional Intermolecular Potential Surfaces From Vibration-Rotation-Tunneling (VRT) Spectra of Van Der Waals Complexes. Annual Review of Physical Chemistry, 1991, 42, 369-392.	10.8	105
64	Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007. Atmospheric Chemistry and Physics, 2009, 9, 7623-7641.	4.9	105
65	Variations of OH radical in an urban plume inferred from NO ₂ column measurements. Geophysical Research Letters, 2013, 40, 1856-1860.	4.0	105
66	Measurement of the perpendicular rotationâ€ŧunneling spectrum of the water dimer by tunable far infrared laser spectroscopy in a planar supersonic jet. Journal of Chemical Physics, 1989, 90, 3937-3943.	3.0	104
67	Tunable far-IR laser spectroscopy of jet-cooled carbon clusters: the nu 2 bending vibration of C3. Science, 1990, 249, 897-900.	12.6	104
68	Space and time variation of δ18O andÎƊ in precipitation: Can paleotemperature be estimated from ice cores?. Global Biogeochemical Cycles, 2000, 14, 851-861.	4.9	104
69	Testing and improving OMI DOMINO tropospheric NO ₂ using observations from the DANDELIONS and INTEXâ€B validation campaigns. Journal of Geophysical Research, 2010, 115, .	3.3	103
70	Heterogeneous N ₂ O ₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4345-4372.	3.3	103
71	Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. Journal of Geophysical Research, 2007, 112, .	3.3	102
72	On Rates and Mechanisms of OH and O ₃ Reactions with Isoprene-Derived Hydroxy Nitrates. Journal of Physical Chemistry A, 2014, 118, 1622-1637.	2.5	102

#	Article	IF	CITATIONS
73	Extending the collocation method to multidimensional molecular dynamics: direct determination of the intermolecular potential of argon-water from tunable far-infrared laser spectroscopy. The Journal of Physical Chemistry, 1990, 94, 7991-8000.	2.9	100
74	Multidimensional hydrogen tunneling dynamics in the ground vibrational state of the ammonia dimer. Journal of Chemical Physics, 1992, 97, 4727-4749.	3.0	99
75	Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 8283-8308.	4.9	99
76	The Berkeley tunable far infrared laser spectrometers. Review of Scientific Instruments, 1991, 62, 1701-1716.	1.3	98
77	Aircraftâ€borne, laserâ€induced fluorescence instrument for the in situ detection of hydroxyl and hydroxyl radicals. Review of Scientific Instruments, 1994, 65, 1858-1876.	1.3	98
78	Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science. Environmental Research, 2017, 158, 286-294.	7.5	96
79	Total Peroxy Nitrates (ΣPNs) in the atmosphere: the Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements. Atmospheric Measurement Techniques, 2010, 3, 593-607.	3.1	95
80	Observations of HNO ₃ , ΣAN, ΣPN and NO ₂ fluxes: evidence for rapid HO _x chemistry within a pine forest canopy. Atmospheric Chemistry and Physics, 2008, 8, 3899-3917.	4.9	94
81	Importance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009. Atmospheric Chemistry and Physics, 2012, 12, 5773-5785.	4.9	93
82	Tunable far infrared laser spectrometers. Review of Scientific Instruments, 1991, 62, 1693-1700.	1.3	92
83	pH Dependence of the Electronic Structure of Glycine. Journal of Physical Chemistry B, 2005, 109, 5375-5382.	2.6	92
84	Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN) above a Ponderosa pine forest. Atmospheric Chemistry and Physics, 2009, 9, 615-634.	4.9	92
85	On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California. Atmospheric Chemistry and Physics, 2014, 14, 3373-3395.	4.9	92
86	Probing the Local Structure of Liquid Water by X-ray Absorption Spectroscopyâ€. Journal of Physical Chemistry B, 2006, 110, 20038-20045.	2.6	91
87	Airborne observations of total RONO ₂ : new constraints on the yield and lifetime of isoprene nitrates. Atmospheric Chemistry and Physics, 2009, 9, 1451-1463.	4.9	91
88	Using satellite observations of tropospheric NO ₂ columns to infer long-term trends in US NO _{<i>x</i>} emissions:Âthe importance of accounting for the free tropospheric NO ₂	4.9	89
89	background. Atmospheric Chemistry and Physics, 2019, 19, 8863-8878. A product study of the isoprene+NO ₃ reaction. Atmospheric Chemistry and Physics, 2009, 9, 4945-4956.	4.9	88
90	Interannual variability in soil nitric oxide emissions over the United States as viewed from space. Atmospheric Chemistry and Physics, 2010, 10, 9943-9952.	4.9	87

#	Article	IF	CITATIONS
91	Real Time In Situ Detection of Organic Nitrates in Atmospheric Aerosols. Environmental Science & Technology, 2010, 44, 5540-5545.	10.0	87
92	Summertime influence of Asian pollution in the free troposphere over North America. Journal of Geophysical Research, 2007, 112, .	3.3	86
93	Effects of biogenic nitrate chemistry on the NO _x lifetime in remote continental regions. Atmospheric Chemistry and Physics, 2012, 12, 11917-11932.	4.9	86
94	Twilight observations suggest unknown sources of HOx. Geophysical Research Letters, 1999, 26, 1373-1376.	4.0	85
95	The Chemistry of Atmosphere-Forest Exchange (CAFE) Model – Part 2: Application to BEARPEX-2007 observations. Atmospheric Chemistry and Physics, 2011, 11, 1269-1294.	4.9	85
96	Tunable far infrared laser spectroscopy of van der Waals bonds: Extended measurements on the lowest Σ bend of ArHCl. Journal of Chemical Physics, 1988, 89, 1268-1276.	3.0	84
97	Application of thermal-dissociation laser induced fluorescence (TD-LIF) to measurement of HNO ₃ , Σalkyl nitrates, Σperoxy nitrates, and NO ₂ fluxes using eddy covariance. Atmospheric Chemistry and Physics, 2006, 6, 3471-3486.	4.9	84
98	Tunable far infrared laser spectroscopy of van der Waals bonds: The intermolecular stretching vibration and effective radial potentials for Ar–H2O. Journal of Chemical Physics, 1990, 92, 169-177.	3.0	83
99	Spectroscopic determination of the intermolecular potential energy surface for Ar–NH3. Journal of Chemical Physics, 1994, 101, 146-173.	3.0	83
100	Characterization of wildfire NO _x emissions using MODIS fire radiative power and OMI tropospheric NO ₂ columns. Atmospheric Chemistry and Physics, 2011, 11, 5839-5851.	4.9	83
101	Satellite measurements of daily variations in soil NOxemissions. Geophysical Research Letters, 2005, 32, .	4.0	82
102	The BErkeley Atmospheric CO ₂ Observation Network: initial evaluation. Atmospheric Chemistry and Physics, 2016, 16, 13449-13463.	4.9	81
103	Tunable farâ€infrared laser spectroscopy of hydrogen bonds: The Ka =0(u)→1(g) rotation–tunneling spectrum of the HCl dimer. Journal of Chemical Physics, 1988, 89, 6577-6587.	3.0	79
104	Observations of total alkyl nitrates during Texas Air Quality Study 2000: Implications for O3and alkyl nitrate photochemistry. Journal of Geophysical Research, 2004, 109, .	3.3	79
105	Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NO _{<i>x</i>} . Environmental Science & Technology, 2018, 52, 13738-13746.	10.0	79
106	Impact of organic nitrates on urban ozone production. Atmospheric Chemistry and Physics, 2011, 11, 4085-4094.	4.9	78
107	Intercomparison of measurements of NO ₂ concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign. Atmospheric Measurement Techniques, 2010, 3, 21-37.	3.1	77
108	The diurnal variation of hydrogen, nitrogen, and chlorine radicals: Implications for the heterogeneous production of HNO2. Geophysical Research Letters, 1994, 21, 2551-2554.	4.0	76

#	Article	IF	CITATIONS
109	A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid. Atmospheric Measurement Techniques, 2011, 4, 2093-2103.	3.1	76
110	Observations of total RONO ₂ over the boreal forest: NO _x sinks and HNO ₃ sources. Atmospheric Chemistry and Physics, 2013, 13, 4543-4562.	4.9	76
111	Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program. Journal of Geophysical Research, 2003, 108, TOP 4-1.	3.3	75
112	The lifetime of nitrogen oxides in an isoprene-dominated forest. Atmospheric Chemistry and Physics, 2016, 16, 7623-7637.	4.9	75
113	Multidimensional intermolecular dynamics from tunable farâ€infrared laser spectroscopy: Angularâ€radial coupling in the intermolecular potential of argon–H2O. Journal of Chemical Physics, 1991, 95, 7891-7906.	3.0	74
114	Observations of the diurnal and seasonal trends in nitrogen oxides in the western Sierra Nevada. Atmospheric Chemistry and Physics, 2006, 6, 5321-5338.	4.9	73
115	Prototype for In Situ Detection of Atmospheric NO3and N2O5via Laser-Induced Fluorescence. Environmental Science & Technology, 2003, 37, 5732-5738.	10.0	71
116	Measurement of HO2NO2in the free troposphere during the Intercontinental Chemical Transport Experiment–North America 2004. Journal of Geophysical Research, 2007, 112, .	3.3	68
117	The distribution of hydrogen, nitrogen, and chlorine radicals in the lower stratosphere: Implications for changes in O3due to emission of NOyfrom supersonic aircraft. Geophysical Research Letters, 1994, 21, 2547-2550.	4.0	67
118	Lightningâ€generated NO _{<i>x</i>} seen by the Ozone Monitoring Instrument during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TC ⁴). Journal of Geophysical Research, 2010, 115, .	3.3	65
119	Photochemical Production and Release of Gaseous NO2from Nitrate-Doped Water Ice. Journal of Physical Chemistry A, 2005, 109, 8520-8525.	2.5	64
120	A double peak in the seasonality of California's photosynthesis as observed from space. Biogeosciences, 2020, 17, 405-422.	3.3	64
121	Determination of the dipole moment ofArH+from the rotational Zeeman effect by tunable far infrared laser spectroscopy. Physical Review Letters, 1987, 58, 996-999.	7.8	63
122	Far infrared vibrationâ€rotationâ€tunneling spectroscopy and internal dynamics of methane–water: A prototypical hydrophobic system. Journal of Chemical Physics, 1994, 100, 863-876.	3.0	63
123	Kinetics of NO and NO2Evolution from Illuminated Frozen Nitrate Solutions. Journal of Physical Chemistry A, 2006, 110, 3578-3583.	2.5	63
124	Nature of the Aqueous Hydroxide Ion Probed by X-ray Absorption Spectroscopy. Journal of Physical Chemistry A, 2007, 111, 4776-4785.	2.5	63
125	Elemental analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry. Atmospheric Measurement Techniques, 2010, 3, 301-310.	3.1	63
126	Cation-cation contact pairing in water: Guanidinium. Journal of Chemical Physics, 2013, 139, 035104.	3.0	62

8

#	Article	IF	CITATIONS
127	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmospheric Chemistry and Physics, 2015, 15, 6721-6744.	4.9	62
128	Effects of temperature-dependent NO _{<i>x</i>} emissions on continental ozone production. Atmospheric Chemistry and Physics, 2018, 18, 2601-2614.	4.9	62
129	Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bulletin of the American Meteorological Society, 2018, 99, 547-567.	3.3	62
130	A comparison of observations and model simulations of NOx/NOyin the lower stratosphere. Geophysical Research Letters, 1999, 26, 1153-1156.	4.0	61
131	Laser-induced fluorescence detection of atmospheric NO_2 with a commercial diode laser and a supersonic expansion. Applied Optics, 2002, 41, 6950.	2.1	61
132	VOC reactivity in central California: comparing an air quality model to ground-based measurements. Atmospheric Chemistry and Physics, 2008, 8, 351-368.	4.9	61
133	The production and persistence of ΣRONO ₂ in the Mexico City plume. Atmospheric Chemistry and Physics, 2010, 10, 7215-7229.	4.9	61
134	The BErkeley Atmospheric CO ₂ Observation Network: field calibration and evaluation of low-cost air quality sensors. Atmospheric Measurement Techniques, 2018, 11, 1937-1946.	3.1	61
135	Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions. Atmospheric Chemistry and Physics, 2016, 16, 4369-4378.	4.9	60
136	Anionic, Cationic, and Nonionic Surfactants in Atmospheric Aerosols from the Baltic Coast at Askö, Sweden: Implications for Cloud Droplet Activation. Environmental Science & Technology, 2016, 50, 2974-2982.	10.0	60
137	Evidence for a nitrous acid (HONO) reservoir at the ground surface in Bakersfield, CA, during CalNex 2010. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9093-9106.	3.3	59
138	Farâ€infrared vibration–rotationâ€ŧunneling spectroscopy of Ar–NH3: Intermolecular vibrations and effective angular potential energy surface. Journal of Chemical Physics, 1991, 95, 9-21.	3.0	57
139	Chemical feedback effects on the spatial patterns of the NO _x weekend effect: a sensitivity analysis. Atmospheric Chemistry and Physics, 2014, 14, 1-9.	4.9	57
140	A comprehensive organic nitrate chemistry: insights into the lifetime of atmospheric organic nitrates. Atmospheric Chemistry and Physics, 2018, 18, 15419-15436.	4.9	57
141	Observed Impacts of COVIDâ€19 on Urban CO ₂ Emissions. Geophysical Research Letters, 2020, 47, e2020GL090037.	4.0	57
142	Ozone production chemistry in the presence of urban plumes. Faraday Discussions, 2016, 189, 169-189.	3.2	56
143	Lightning NO _{<i>x</i>} Emissions: Reconciling Measured and Modeled Estimates With Updated NO _{<i>x</i>} Chemistry. Geophysical Research Letters, 2017, 44, 9479-9488.	4.0	56
144	Measurements of N ₂ O ₅ , NO ₂ , and O ₃ east of the San Francisco Bay. Atmospheric Chemistry and Physics, 2005, 5, 483-491.	4.9	55

#	Article	IF	CITATIONS
145	Measurement of atmospheric nitrous acid at Bodgett Forest during BEARPEX2007. Atmospheric Chemistry and Physics, 2010, 10, 6283-6294.	4.9	55
146	Network design for quantifying urban CO ₂ emissions: assessing trade-offs between precision and network density. Atmospheric Chemistry and Physics, 2016, 16, 13465-13475.	4.9	55
147	Comparisons of in situ and long path measurements of NO2in urban plumes. Journal of Geophysical Research, 2003, 108, .	3.3	54
148	Testing Atmospheric Oxidation in an Alabama Forest. Journals of the Atmospheric Sciences, 2016, 73, 4699-4710.	1.7	54
149	On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol. Atmospheric Chemistry and Physics, 2016, 16, 2575-2596.	4.9	53
150	Ab initio potential energy surface and dynamics of He–CO. Journal of Chemical Physics, 1994, 101, 8680-8686.	3.0	52
151	Global and regional effects of the photochemistry of CH ₃ O ₂ NO <sub&a evidence from ARCTAS. Atmospheric Chemistry and Physics, 2011, 11, 4209-4219.</sub&a 	m p;g t;2&a	am ąz lt;/sub&a
152	NO _{x} Lifetime and NO _{y} Partitioning During WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9813-9827.	3.3	52
153	Local Hydration Environments of Amino Acids and Dipeptides Studied by X-ray Spectroscopy of Liquid Microjets. Journal of Physical Chemistry B, 2005, 109, 21640-21646.	2.6	51
154	Gas/particle partitioning of total alkyl nitrates observed with TD‣IF in Bakersfield. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6651-6662.	3.3	51
155	Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons. Atmospheric Chemistry and Physics, 2010, 10, 8761-8781.	4.9	50
156	Hydroxy nitrate production in the OH-initiated oxidation of alkenes. Atmospheric Chemistry and Physics, 2015, 15, 4297-4316.	4.9	50
157	Measurements of the sum of HO ₂ NO ₂ and CH ₃ O ₂ NO <sub&a in the remote troposphere. Atmospheric Chemistry and Physics. 2004. 4. 377-384.</sub&a 	n þ;g t;2&a	amþ;lt;/sub&a
158	Isotope Fractionation of Water during Evaporation without Condensation. Journal of Physical Chemistry B, 2005, 109, 24391-24400.	2.6	49
159	Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,368.	3.3	49
160	Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring. Atmospheric Chemistry and Physics, 2010, 10, 8353-8372.	4.9	48
161	Effects of daily meteorology on the interpretation of space-based remote sensing of NO ₂ . Atmospheric Chemistry and Physics, 2016, 16, 15247-15264.	4.9	48
162	Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds. Atmospheric Chemistry and Physics, 2011, 11, 11867-11894.	4.9	46

#	Article	IF	CITATIONS
163	Observations of large reductions in the NO/NOyratio near the mid-latitude tropopause and the role of heterogeneous chemistry. Geophysical Research Letters, 1996, 23, 3223-3226.	4.0	44
164	The Electronic Structure of the Hydrated Proton:  A Comparative X-ray Absorption Study of Aqueous HCl and NaCl Solutions. Journal of Physical Chemistry B, 2006, 110, 1166-1171.	2.6	44
165	On the role of monoterpene chemistry in the remote continental boundary layer. Atmospheric Chemistry and Physics, 2014, 14, 1225-1238.	4.9	44
166	A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign. Atmospheric Chemistry and Physics, 2010, 10, 2091-2115.	4.9	43
167	In Situ Measurements of OH and H02in the Upper Troposphere and Stratosphere. Journals of the Atmospheric Sciences, 1995, 52, 3413-3420.	1.7	42
168	Sources, Sinks, and the Distribution of OH in the Lower Stratosphereâ€. Journal of Physical Chemistry A, 2001, 105, 1543-1553.	2.5	42
169	The coupling of ClONO2, ClO, and NO2in the lower stratosphere from in situ observations using the NASA ER-2 aircraft. Journal of Geophysical Research, 1999, 104, 26705-26714.	3.3	41
170	Observations of NO _x , ΣPNs, ΣANs, and HNO ₃ at a Rural Site in the California Sierra Nevada Mountains: summertime diurnal cycles. Atmospheric Chemistry and Physics, 2009, 9, 4879-4896.	4.9	41
171	Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007. Atmospheric Chemistry and Physics, 2011, 11, 8883-8897.	4.9	41
172	The Role of Temperature and NO <i>_x</i> in Ozone Trends in the Los Angeles Basin. Environmental Science & Technology, 2020, 54, 15652-15659.	10.0	41
173	Flight Deployment of a Highâ€Resolution Timeâ€ofâ€Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen Oxide Species. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7670-7686.	3.3	39
174	Are models of catalytic removal of O3by HOxaccurate? Constraints from in situ measurements of the OH to HO2ratio. Geophysical Research Letters, 1994, 21, 2539-2542.	4.0	37
175	Preparing to Measure the Effects of the NO _x SIP Call— Methods for Ambient Air Monitoring of NO, NO ₂ , NO _y , and Individual NO _z Species. Journal of the Air and Waste Management Association, 2002, 52, 542-562.	1.9	37
176	Evaluation of simulated photochemical partitioning of oxidized nitrogen in the upper troposphere. Atmospheric Chemistry and Physics, 2011, 11, 275-291.	4.9	37
177	Comparison of modeled and observed values of NO2and JNO2during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission. Journal of Geophysical Research, 1999, 104, 26687-26703.	3.3	36
178	Eddy covariance fluxes and vertical concentration gradient measurements of NO and NO ₂ over a ponderosa pine ecosystem: observational evidence for within-canopy chemical removal of NO _x . Atmospheric Chemistry and Physics, 2014, 14, 5495-5512.	4.9	36
179	Southeast Atmosphere Studies: learning from model-observation syntheses. Atmospheric Chemistry and Physics, 2018, 18, 2615-2651.	4.9	36
180	Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress. Atmospheric Environment: X, 2019, 2, 100031.	1.4	36

#	Article	IF	CITATIONS
181	The response of ClO radical concentrations to variations in NO2radical concentrations in the lower stratosphere. Geophysical Research Letters, 1994, 21, 2543-2546.	4.0	35
182	Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign. Journal of Geophysical Research, 2008, 113, .	3.3	35
183	Observations of the temperature dependent response of ozone to NO _x reductions in the Sacramento, CA urban plume. Atmospheric Chemistry and Physics, 2011, 11, 6945-6960.	4.9	35
184	Measurements of CH ₃ O ₂ NO <sub&a in the upper troposphere. Atmospheric Measurement Techniques, 2015, 8, 987-997.</sub&a 	am p;g t;2&	.ampglt;/sub&a
185	Observations of the effects of temperature on atmospheric HNO ₃ , ΣANs, ΣPNs, and NO _x : evidence for a temperature-dependent HO _x source. Atmospheric Chemistry and Physics, 2008, 8,	4.9	34
186	1867-1879. Summertime buildup and decay of lightning NO _x and aged thunderstorm outflow above North America. Journal of Geophysical Research, 2009, 114, .	3.3	34
187	Low temperatures enhance organic nitrate formation: evidence from observations in the 2012 Uintah Basin Winter Ozone Study. Atmospheric Chemistry and Physics, 2014, 14, 12441-12454.	4.9	34
188	Observed NO/NO ₂ Ratios in the Upper Troposphere Imply Errors in NOâ€NO ₂ â€O ₃ Cycling Kinetics or an Unaccounted NO _x Reservoir. Geophysical Research Letters, 2018, 45, 4466-4474.	4.0	34
189	The changing role of organic nitrates in the removal and transport of NO _{<i>x</i>} . Atmospheric Chemistry and Physics, 2020, 20, 267-279.	4.9	34
190	An examination of the inorganic chlorine budget in the lower stratosphere. Journal of Geophysical Research, 2000, 105, 1957-1971.	3.3	33
191	Biogenic 2â€methylâ€3â€butenâ€2â€ol increases regional ozone and HO _x sources. Geophysical Research Letters, 2007, 34, .	4.0	33
192	Determination of the evaporation coefficient of D ₂ O. Atmospheric Chemistry and Physics, 2008, 8, 6699-6706.	4.9	33
193	Combining Bayesian methods and aircraft observations to constrain the HO [.] + NO ₂ reaction rate. Atmospheric Chemistry and Physics, 2012, 12, 653-667.	4.9	33
194	Observations of total peroxy nitrates and aldehydes: measurement interpretation and inference of OH radical concentrations. Atmospheric Chemistry and Physics, 2007, 7, 1947-1960.	4.9	32
195	Vapor-Pressure Pathways Initiate but Hydrolysis Products Dominate the Aerosol Estimated from Organic Nitrates. ACS Earth and Space Chemistry, 2019, 3, 1426-1437.	2.7	32
196	Measurement of the intermolecular vibration–rotation tunneling spectrum of the ammonia dimer by tunable far infrared laser spectroscopy. Journal of Chemical Physics, 1991, 94, 4776-4789.	3.0	31
197	The budget and partitioning of stratospheric chlorine during the 1997 Arctic summer. Journal of Geophysical Research, 1999, 104, 26653-26665.	3.3	31
198	ClNO ₂ Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,994.	3.3	31

#	Article	IF	CITATIONS
199	Assessment of NO ₂ observations during DISCOVER-AQ and KORUS-AQ field campaigns. Atmospheric Measurement Techniques, 2020, 13, 2523-2546.	3.1	31
200	The Berkeley High Resolution Tropospheric NO ₂ product. Earth System Science Data, 2018, 10, 2069-2095.	9.9	31
201	Interpreting the H/D Isotope Fractionation of Liquid Water during Evaporation without Condensation. Journal of Physical Chemistry C, 2007, 111, 7011-7020.	3.1	30
202	Space-based observations of fire NO _x emission coefficients: a global biome-scale comparison. Atmospheric Chemistry and Physics, 2014, 14, 2509-2524.	4.9	30
203	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 2018, 18, 2341-2361.	4.9	30
204	Direct estimates of biomass burning NO _{<i>x</i>} emissions and lifetimes using daily observations from TROPOMI. Atmospheric Chemistry and Physics, 2021, 21, 15569-15587.	4.9	30
205	Properties of Seawater Surfactants Associated with Primary Marine Aerosol Particles Produced by Bursting Bubbles at a Model Air–Sea Interface. Environmental Science & Technology, 2019, 53, 9407-9417.	10.0	28
206	Anthropogenic Control Over Wintertime Oxidation of Atmospheric Pollutants. Geophysical Research Letters, 2019, 46, 14826-14835.	4.0	28
207	Laboratory evaluation of a novel thermal dissociation chemiluminescence method for in situ detection of nitrous acid. Atmospheric Environment, 2007, 41, 3993-4001.	4.1	27
208	Evaluation of the use of a commercially available cavity ringdown absorption spectrometer for measuring NO2 in flight, and observations over the Mid-Atlantic States, during DISCOVER-AQ. Journal of Atmospheric Chemistry, 2015, 72, 503-521.	3.2	27
209	Modulation of hydroxyl variability by ENSO in the absence of external forcing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8931-8936.	7.1	27
210	On the evaporation of ammonium sulfate solution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18897-18901.	7.1	26
211	Observations of a seasonal cycle in NOxemissions from fires in African woody savannas. Geophysical Research Letters, 2013, 40, 1451-1455.	4.0	26
212	An Atmospheric Constraint on the NO ₂ Dependence of Daytime Near-Surface Nitrous Acid (HONO). Environmental Science & Technology, 2015, 49, 12774-12781.	10.0	26
213	Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity. Atmospheric Environment, 2016, 128, 28-44.	4.1	26
214	Observing local CO ₂ sources using low-cost, near-surface urban monitors. Atmospheric Chemistry and Physics, 2018, 18, 13773-13785.	4.9	26
215	Evolution and stoichiometry of heterogeneous processing in the Antarctic stratosphere. Journal of Geophysical Research, 1997, 102, 13235-13253.	3.3	25
216	Nitrogen oxides in the global upper troposphere: interpreting cloud-sliced NO ₂ observations from the OMI satellite instrument. Atmospheric Chemistry and Physics, 2018, 18, 17017-17027.	4.9	25

#	Article	IF	CITATIONS
217	Measurements of NO and NO ₂ exchange between the atmosphere and <i>Quercus agrifolia</i> . Atmospheric Chemistry and Physics, 2018, 18, 14161-14173.	4.9	25
218	Concentrations and Adsorption Isotherms for Amphiphilic Surfactants in PM ₁ Aerosols from Different Regions of Europe. Environmental Science & Technology, 2019, 53, 12379-12388.	10.0	25
219	Evaluation of version 3.0B of the BEHR OMI NO ₂ product. Atmospheric Measurement Techniques, 2019, 12, 129-146.	3.1	25
220	Overview: The stratospheric photochemistry aerosols and dynamics expedition (SPADE) and Airborne Arctic Stratospheric Expedition II (AASE-II). Geophysical Research Letters, 1994, 21, 2535-2538.	4.0	24
221	The NOxâ^'HNO3System in the Lower Stratosphere:Â Insights from In Situ Measurements and Implications of theJHNO3â^'[OH] Relationship. Journal of Physical Chemistry A, 2001, 105, 1521-1534.	2.5	24
222	Effect of Surface Active Ions on the Rate of Water Evaporation. Journal of Physical Chemistry C, 2010, 114, 11880-11885.	3.1	24
223	Evaporation kinetics of aqueous acetic acid droplets: effects of soluble organic aerosol components on the mechanism of water evaporation. Physical Chemistry Chemical Physics, 2013, 15, 11634.	2.8	24
224	Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4272-4295.	3.3	24
225	Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric Chemistry and Physics, 2016, 16, 573-583.	4.9	24
226	Accelerated reduction of air pollutants in China, 2017-2020. Science of the Total Environment, 2022, 803, 150011.	8.0	24
227	Laboratory measurement of the pure rotational spectrum of vibrationally excited HCO(+) (nu2 = 1) by far-infrared laser sideband spectroscopy. Astrophysical Journal, 1987, 316, L45.	4.5	24
228	Photochemistry of NO2 in Earth's Stratosphere:  Constraints from Observations. Chemical Reviews, 2003, 103, 4985-4998.	47.7	23
229	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.	2.5	23
230	Assimilation of satellite NO ₂ observations at high spatial resolution using OSSEs. Atmospheric Chemistry and Physics, 2017, 17, 7067-7081.	4.9	23
231	Impact of OA on the Temperature Dependence of PM 2.5 in the Los Angeles Basin. Environmental Science & Technology, 2021, 55, 3549-3558.	10.0	23
232	Quantitative constraints on the atmospheric chemistry of nitrogen oxides: An analysis along chemical coordinates. Journal of Geophysical Research, 2000, 105, 24283-24304.	3.3	22
233	Comparison of N ₂ O ₅ mixing ratios during NO3Comp 2007 in SAPHIR. Atmospheric Measurement Techniques, 2012, 5, 2763-2777.	3.1	21
234	Lightning NO ₂ simulation over the contiguous US and its effects on satellite NO ₂ retrievals. Atmospheric Chemistry and Physics, 2019, 19, 13067-13078.	4.9	21

#	Article	IF	CITATIONS
235	The role of HOxin super- and subsonic aircraft exhaust plumes. Geophysical Research Letters, 1997, 24, 65-68.	4.0	19
236	Quantification of the effect of modeled lightning NO ₂ on UV–visible air mass factors. Atmospheric Measurement Techniques, 2017, 10, 4403-4419.	3.1	19
237	Observation of slant column NO ₂ using the super-zoom mode of AURA-OMI. Atmospheric Measurement Techniques, 2011, 4, 1929-1935.	3.1	18
238	Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species. Atmospheric Measurement Techniques, 2017, 10, 1911-1926.	3.1	18
239	Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study. Atmospheric Chemistry and Physics, 2018, 18, 14493-14510.	4.9	18
240	Modeling NH 4 NO 3 Over the San Joaquin Valley During the 2013 DISCOVERâ€AQ Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4727-4745.	3.3	18
241	On the export of reactive nitrogen from Asia: NO _x partitioning and effects on ozone. Atmospheric Chemistry and Physics, 2013, 13, 4617-4630.	4.9	17
242	Ozone destruction and production rates between spring and autumn in the Arctic stratosphere. Geophysical Research Letters, 2000, 27, 2605-2608.	4.0	16
243	Establishing the Dependence of [HO2]/[OH] on Temperature, Halogen Loading, O3, and NOxBased on in Situ Measurements from the NASA ER-2â€. Journal of Physical Chemistry A, 2001, 105, 1535-1542.	2.5	16
244	A Method to Determine the Spatial Resolution Required to Observe Air Quality From Space. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 1308-1314.	6.3	16
245	Observations of atmosphere-biosphere exchange of total and speciated peroxynitrates: nitrogen fluxes and biogenic sources of peroxynitrates. Atmospheric Chemistry and Physics, 2012, 12, 9763-9773.	4.9	16
246	Laboratory measurements of stomatal NO ₂ deposition to native California trees and the role of forests in the NO _x cycle. Atmospheric Chemistry and Physics, 2020, 20, 14023-14041.	4.9	16
247	Consistency of Ozone and Nitrogen Oxides Standards at Tropospherically Relevant Mixing Ratios. Journal of the Air and Waste Management Association, 2005, 55, 1473-1479.	1.9	15
248	Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sensing, 2018, 10, 1789.	4.0	15
249	A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 459-483.	3.1	15
250	Comparing atmospheric [HO2]/[OH] to modeled [HO2]/[OH]: Identifying discrepancies with reaction rates. Geophysical Research Letters, 2001, 28, 967-970.	4.0	14
251	Observation of rates and products in the reaction of NO ₃ with submicron squalane and squalene aerosol. Physical Chemistry Chemical Physics, 2013, 15, 882-892.	2.8	14
252	Particulate organic nitrates observed in an oil and natural gas production region during wintertime. Atmospheric Chemistry and Physics, 2015, 15, 9313-9325.	4.9	14

#	Article	IF	CITATIONS
253	Characterizing CO and NO _{<i>y</i>} Sources and Relative Ambient Ratios in the Baltimore Area Using Ambient Measurements and Source Attribution Modeling. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3304-3320.	3.3	14
254	Wintertime Overnight NO _{<i>x</i>} Removal in a Southeastern United States Coalâ€fired Power Plant Plume: A Model for Understanding Winter NO _{<i>x</i>} Processing and its Implications. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1412-1425.	3.3	14
255	Influence of surfactants on growth of individual aqueous coarse mode aerosol particles. Aerosol Science and Technology, 2018, 52, 459-469.	3.1	14
256	Observing U.S. Regional Variability in Lightning NO ₂ Production Rates. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031362.	3.3	13
257	Combining Machine Learning and Satellite Observations to Predict Spatial and Temporal Variation of near Surface OH in North American Cities. Environmental Science & amp; Technology, 2022, 56, 7362-7371.	10.0	12
258	AÂmodel-based analysis of foliar NO _{<i>x</i>} deposition. Atmospheric Chemistry and Physics, 2020, 20, 2123-2141.	4.9	11
259	Importance of biogenic volatile organic compounds to acyl peroxy nitrates (APN) production in the southeastern US during SOAS 2013. Atmospheric Chemistry and Physics, 2019, 19, 1867-1880.	4.9	10
260	The Berkeley Environmental Air-quality and CO ₂ Network: field calibrations of sensor temperature dependence and assessment of network scale CO ₂ accuracy. Atmospheric Measurement Techniques, 2021, 14, 5487-5500.	3.1	10
261	Extreme events driving year-to-year differences in gross primary productivity across the US. Biogeosciences, 2021, 18, 6579-6588.	3.3	10
262	Estimate of OH trends over one decade in North American cities. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117399119.	7.1	10
263	Microphysics and chemistry of sulphate aerosols at warm stratospheric temperatures. Journal of Geophysical Research, 1999, 104, 26737-26751.	3.3	9
264	Marine Aerosol Production via Detrainment of Bubble Plumes Generated in Natural Seawater With a Forcedâ€Air Venturi. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10931-10950.	3.3	9
265	Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants. Atmospheric Chemistry and Physics, 2022, 22, 4253-4275.	4.9	9
266	Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ. Environmental Science & Technology, 2021, 55, 16326-16338.	10.0	8
267	Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [CIONO2]/[HCl] during POLARIS. Journal of Geophysical Research, 2001, 106, 1713-1732.	3.3	7
268	Comparison of Airborne Reactive Nitrogen Measurements During WINTER. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10483-10502.	3.3	7
269	Evidence of Nighttime Production of Organic Nitrates During SEAC 4 RS, FRAPPÉ, and KORUSâ€AQ. Geophysical Research Letters, 2020, 47, e2020GL087860.	4.0	7
270	Leaf Stomatal Control over Acyl Peroxynitrate Dry Deposition to Trees. ACS Earth and Space Chemistry, 2020, 4, 2162-2170.	2.7	7

#	Article	IF	CITATIONS
271	Leaf Stomatal Uptake of Alkyl Nitrates. Environmental Science and Technology Letters, 2022, 9, 186-190.	8.7	7
272	Optical cavity resonances in water micro-droplets: Implications for shortwave cloud forcing. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	5
273	A multi-city urban atmospheric greenhouse gas measurement data synthesis. Scientific Data, 2022, 9, .	5.3	5
274	Decadal Trends in the Temperature Dependence of Summertime Urban PM _{2.5} in the Northeast United States. ACS Earth and Space Chemistry, 2022, 6, 1793-1798.	2.7	5
275	The potential for geostationary remote sensing of NO ₂ to improve weather prediction. Atmospheric Chemistry and Physics, 2021, 21, 9573-9583.	4.9	4
276	Assessing vehicle fuel efficiency using a dense network of CO ₂ observations. Atmospheric Chemistry and Physics, 2022, 22, 3891-3900.	4.9	4
277	Observing Annual Trends in Vehicular CO ₂ Emissions. Environmental Science & Technology, 2022, 56, 3925-3931.	10.0	4
278	Fluorescence Methods. , 0, , 189-228.		3
279	Development of a Solar-Induced Fluorescence─Canopy Conductance Model and Its Application to Stomatal Reactive Nitrogen Deposition. ACS Earth and Space Chemistry, 0, , .	2.7	3
280	Spaceâ€Borne Estimation of Volcanic Sulfate Aerosol Lifetime. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033883.	3.3	2
281	Data Quality and Validation of Satellite Measurements of Tropospheric Composition. Physics of Earth and Space Environments, 2011, , 315-364.	0.5	2
282	Direct Retrieval of NO ₂ Vertical Columns from UV-Vis (390-495 nm) Spectral Radiances Using a Neural Network. Journal of Remote Sensing, 2022, 2022, .	6.7	2
283	Corrigendum to "Measurement of atmospheric nitrous acid at Blodgett Forest during BEARPEX2007" published in Atmos. Chem. Phys., 10, 6283-6294, 2010. Atmospheric Chemistry and Physics, 2010, 10, 6501-6501.	4.9	0