Ronald C Cohen

List of Publications by Citations

Source: https://exaly.com/author-pdf/774152/ronald-c-cohen-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,560 80 347 120 h-index g-index citations papers 6.44 20,939 7.3 423 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
347	Energetics of hydrogen bond network rearrangements in liquid water. <i>Science</i> , 2004 , 306, 851-3	33.3	420
346	Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO. <i>Science</i> , 1994 , 266, 398-404	33.3	336
345	Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 14171-4	11.5	323
344	Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 6117-6136	6.8	312
343	Isotopic fractionation of water during evaporation. Journal of Geophysical Research, 2003, 108,		308
342	Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow. <i>Journal of Geophysical Research</i> , 2007 , 112,		257
341	Why do Models Overestimate Surface Ozone in the Southeastern United States?. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 13561-13577	6.8	239
340	Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 7779-7795	6.8	236
339	Airborne measurement of OH reactivity during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 16	53 <i>6</i> 183	225
338	Organic nitrate and secondary organic aerosol yield from NO₃ oxidation of pinene evaluated using a gas-phase kinetics/aerosol partitioning model. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 1431-1449	6.8	218
337	Trends in OMI NO₂ observations over the United States: effects of emission control technology and the economic recession. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 12197-12	2268	214
336	Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios. <i>Analytical Chemistry</i> , 2000 , 72, 528-39	7.8	211
335	A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 4-1-ACH 4-14		209
334	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2103-2162	6.8	206
333	Evidence for NO(x) control over nighttime SOA formation. <i>Science</i> , 2012 , 337, 1210-2	33.3	200
332	Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1516-21	11.5	195
331	Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 9739-9760	6.8	188

(2014-2010)

330	Chemistry of hydrogen oxide radicals (HO_x) in the Arctic troposphere in spring. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5823-5838	6.8	184	
329	Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry. Journal of Geophysical Research D: Atmospheres, 2013 , 118, 11,256-11,268	4.4	182	
328	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013 , 118, 5830-5866	4.4	178	
327	Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 7-1		178	
326	Insights into hydroxyl measurements and atmospheric oxidation in a California forest. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 8009-8020	6.8	175	
325	Observational constraints on the chemistry of isoprene nitrates over the eastern United States. Journal of Geophysical Research, 2007 , 112,		174	
324	Biomass burning dominates brown carbon absorption in the rural southeastern United States. <i>Geophysical Research Letters</i> , 2015 , 42, 653-664	4.9	173	
323	Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6685-6703	6.8	168	
322	Determination of an improved intermolecular global potential energy surface for ArH2O from vibrationBotationBunneling spectroscopy. <i>Journal of Chemical Physics</i> , 1993 , 98, 6007-6030	3.9	166	
321	Tropospheric Emissions: Monitoring of Pollution (TEMPO). <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2017 , 186, 17-39	2.1	163	
320	Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America. <i>Journal of Geophysical Research</i> , 2006 , 111,		159	
319	A Preliminary Synthesis of Modeled Climate Change Impacts on U.S. Regional Ozone Concentrations. <i>Bulletin of the American Meteorological Society</i> , 2009 , 90, 1843-1864	6.1	153	
318	Effects of alkali metal halide salts on the hydrogen bond network of liquid water. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 7046-52	3.4	149	
317	An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. <i>Chemical Reviews</i> , 2013 , 113, 5848-70	68.1	147	
316	HOx chemistry during INTEX-A 2004: Observation, model calculation, and comparison with previous studies. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		142	
315	The Deep Convective Clouds and Chemistry (DC3) Field Campaign. <i>Bulletin of the American Meteorological Society</i> , 2015 , 96, 1281-1309	6.1	140	
314	Influence of future climate and emissions on regional air quality in California. <i>Journal of Geophysical Research</i> , 2006 , 111,		139	
313	Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons. <i>Environmental Science & Environmental Scie</i>	10.3	134	

312	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEACRS) and ground-based (SOAS) observations in the Southeast US. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 5969-5991	6.8	129
311	The weekend effect within and downwind of Sacramento IPart 1: Observations of ozone, nitrogen oxides, and VOC reactivity. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 5327-5339	6.8	125
310	Raman thermometry measurements of free evaporation from liquid water droplets. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12892-8	16.4	124
309	Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8585-8605	6.8	123
308	Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions. <i>Atmospheric Environment</i> , 2010 , 44, 4553-4564	5.3	116
307	Vibration-rotation-tunneling spectroscopy of the van der Waals bond: a new look at intermolecular forces. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 1024-1040		116
306	Effects of model resolution on the interpretation of satellite NO₂ observations. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11647-11655	6.8	115
305	A high spatial resolution retrieval of NO₂ column densities from OMI: method and evaluation. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8543-8554	6.8	113
304	Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 6809-12	11.5	112
303	On the observed response of ozone to NO_x and VOC reactivity reductions in San Joaquin Valley California 1995present. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 8323-8339	6.8	108
302	Comparison of tropospheric NO2 from in situ aircraft measurements with near-real-time and standard product data from OMI. <i>Journal of Geophysical Research</i> , 2008 , 113,		108
301	Effects of cations on the hydrogen bond network of liquid water: new results from X-ray absorption spectroscopy of liquid microjets. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 5301-9	3.4	105
300	Experimental determination of dipole moments for molecular ions: Improved measurements for ArH+. <i>Journal of Chemical Physics</i> , 1989 , 90, 1358-1361	3.9	105
299	Temperature and recent trends in the chemistry of continental surface ozone. <i>Chemical Reviews</i> , 2015 , 115, 3898-918	68.1	102
298	Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network. <i>Journal of Geophysical Research</i> , 2006 , 111,		102
297	SOA from limonene: role of NO₃ in its generation and degradation. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 3879-3894	6.8	101
296	Space-based constraints on spatial and temporal patterns of NO(x) emissions in California, 2005-2008. <i>Environmental Science & Environmental Science &</i>	10.3	101
295	Direct measurements of the convective recycling of the upper troposphere. <i>Science</i> , 2007 , 315, 816-20	33.3	101

294	On alkyl nitrates, O3, and the thissing NOyll Journal of Geophysical Research, 2003, 108,		100
293	Measurement of the perpendicular rotation-tunneling spectrum of the water dimer by tunable far infrared laser spectroscopy in a planar supersonic jet. <i>Journal of Chemical Physics</i> , 1989 , 90, 3937-3943	3.9	99
292	Tunable far-IR laser spectroscopy of jet-cooled carbon clusters: the nu 2 bending vibration of C3. <i>Science</i> , 1990 , 249, 897-900	33.3	98
291	Observational insights into aerosol formation from isoprene. <i>Environmental Science & Environmental Sc</i>	10.3	95
290	Extending the collocation method to multidimensional molecular dynamics: direct determination of the intermolecular potential of argon-water from tunable far-infrared laser spectroscopy. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 7991-8000		95
289	Tunable far infrared laser spectroscopy of van der Waals bonds: VibrationEotationEunneling spectra of ArH2O. <i>Journal of Chemical Physics</i> , 1988 , 89, 4494-4504	3.9	95
288	Chemical evolution of the Sacramento urban plume: Transport and oxidation. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 3-1-ACH 3-15		94
287	Multidimensional Intermolecular Potential Surfaces From Vibration-Rotation-Tunneling (VRT) Spectra of Van Der Waals Complexes. <i>Annual Review of Physical Chemistry</i> , 1991 , 42, 369-392	15.7	94
286	Space and time variation of 🛮 80 and 🗈 in precipitation: Can paleotemperature be estimated from ice cores?. Global Biogeochemical Cycles, 2000, 14, 851-861	5.9	92
285	Comparison of MkIV balloon and ER-2 aircraft measurements of atmospheric trace gases. <i>Journal of Geophysical Research</i> , 1999 , 104, 26779-26790		91
284	Organic nitrate aerosol formation via NO₃ + biogenic volatile organic compounds in the southeastern United States. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 13377-133	9 2 .8	90
283	Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX-B validation campaigns. <i>Journal of Geophysical Research</i> , 2010 , 115,		90
282	Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 8283-8308	6.8	89
281	Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. <i>Journal of Geophysical Research</i> , 2007 , 112,		89
280	Probing the local structure of liquid water by X-ray absorption spectroscopy. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 20038-45	3.4	89
279	Multidimensional hydrogen tunneling dynamics in the ground vibrational state of the ammonia dimer. <i>Journal of Chemical Physics</i> , 1992 , 97, 4727-4749	3.9	89
278	On rates and mechanisms of OH and O3 reactions with isoprene-derived hydroxy nitrates. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 1622-37	2.8	88
277	Importance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 5773-5785	6.8	88

276	Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals. <i>Review of Scientific Instruments</i> , 1994 , 65, 1858-1876	1.7	88
275	The Berkeley tunable far infrared laser spectrometers. <i>Review of Scientific Instruments</i> , 1991 , 62, 1701-	17.1,6	88
274	Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7623-7641	6.8	87
273	Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 2141-2156	6.8	86
272	Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8439-8455	6.8	84
271	pH dependence of the electronic structure of glycine. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 5375-	823.4	84
270	Tunable far infrared laser spectrometers. Review of Scientific Instruments, 1991, 62, 1693-1700	1.7	83
269	Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN) above a Ponderosa pine forest. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 615-634	6.8	80
268	Airborne observations of total RONO₂: new constraints on the yield and lifetime of isoprene nitrates. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 1451-1463	6.8	80
267	Observations of HNO₃, AN, PN and NO₂ fluxes: evidence for rapid HO_x chemistry within a pine forest canopy. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 3899-3917	6.8	80
266	Spectroscopic determination of the intermolecular potential energy surface for ArNH3. <i>Journal of Chemical Physics</i> , 1994 , 101, 146-173	3.9	78
265	Tunable far infrared laser spectroscopy of van der Waals bonds: Extended measurements on the lowest [bend of ArHCl. <i>Journal of Chemical Physics</i> , 1988 , 89, 1268-1276	3.9	78
264	Variations of OH radical in an urban plume inferred from NO2 column measurements. <i>Geophysical Research Letters</i> , 2013 , 40, 1856-1860	4.9	77
263	Tunable far infrared laser spectroscopy of van der Waals bonds: The intermolecular stretching vibration and effective radial potentials for ArH2O. <i>Journal of Chemical Physics</i> , 1990 , 92, 169-177	3.9	77
262	Direct observation of changing NO lifetime in North American cities. <i>Science</i> , 2019 , 366, 723-727	33.3	76
261	Twilight observations suggest unknown sources of HOx. <i>Geophysical Research Letters</i> , 1999 , 26, 1373-1	3769	76
260	Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science. <i>Environmental Research</i> , 2017 , 158, 286-294	7.9	74
259	Real time in situ detection of organic nitrates in atmospheric aerosols. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 5540-5	10.3	74

(2011-2009)

258	A product study of the isoprene+NO₃ reaction. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4945-4956	6.8	74
257	Total Peroxy Nitrates (PNs) in the atmosphere: the Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements. <i>Atmospheric Measurement Techniques</i> , 2010 , 3, 593-607	4	72
256	Summertime influence of Asian pollution in the free troposphere over North America. <i>Journal of Geophysical Research</i> , 2007 , 112,		72
255	Application of thermal-dissociation laser induced fluorescence (TD-LIF) to measurement of HNO₃, Elkyl nitrates, peroxy nitrates, and NO₂ fluxes using eddy covariance. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 3471-3486	6.8	71
254	Observations of total alkyl nitrates during Texas Air Quality Study 2000: Implications for O3 and alkyl nitrate photochemistry. <i>Journal of Geophysical Research</i> , 2004 , 109,		71
253	Interannual variability in soil nitric oxide emissions over the United States as viewed from space. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 9943-9952	6.8	70
252	Satellite measurements of daily variations in soil NOx emissions. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	70
251	Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 4345-4372	4.4	69
250	The diurnal variation of hydrogen, nitrogen, and chlorine radicals: Implications for the heterogeneous production of HNO2. <i>Geophysical Research Letters</i> , 1994 , 21, 2551-2554	4.9	69
249	Characterization of wildfire NO_x emissions using MODIS fire radiative power and OMI tropospheric NO₂ columns. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 5839-5851	6.8	68
248	Tunable far-infrared laser spectroscopy of hydrogen bonds: The Ka =0(u)-jl (g) rotationEunneling spectrum of the HCl dimer. <i>Journal of Chemical Physics</i> , 1988 , 89, 6577-6587	3.9	68
247	The Chemistry of Atmosphere-Forest Exchange (CAFE) Model (Part 2: Application to BEARPEX-2007 observations. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1269-1294	6.8	67
246	Observations of the diurnal and seasonal trends in nitrogen oxides in the western Sierra Nevada. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 5321-5338	6.8	67
245	Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program. <i>Journal of Geophysical Research</i> , 2003 , 108, TOP 4-1		67
244	Multidimensional intermolecular dynamics from tunable far-infrared laser spectroscopy: Angular-radial coupling in the intermolecular potential of argon⊞2O. <i>Journal of Chemical Physics</i> , 1991 , 95, 7891-7906	3.9	67
243	Impact of organic nitrates on urban ozone production. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 40	856409	4 66
242	Effects of biogenic nitrate chemistry on the NO_x lifetime in remote continental regions. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 11917-11932	6.8	66
241	A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 2093-2103	4	65

240	Intercomparison of measurements of NO₂ concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign. <i>Atmospheric Measurement Techniques</i> , 2010 , 3, 21-37	4	63
239	Nature of the aqueous hydroxide ion probed by X-ray absorption spectroscopy. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 4776-85	2.8	62
238	The distribution of hydrogen, nitrogen, and chlorine radicals in the lower stratosphere: Implications for changes in O3 due to emission of NOy from supersonic aircraft. <i>Geophysical Research Letters</i> , 1994 , 21, 2547-2550	4.9	62
237	On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3373-3395	6.8	61
236	Measurement of HO2NO2 in the free troposphere during the Intercontinental Chemical Transport Experiment Morth America 2004. <i>Journal of Geophysical Research</i> , 2007 , 112,		60
235	Kinetics of NO and NO2 evolution from illuminated frozen nitrate solutions. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 3578-83	2.8	60
234	Observations of total RONO₂ over the boreal forest: NO_x sinks and HNO₃ sources. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4543-4562	6.8	57
233	Lightning-generated NOx seen by the Ozone Monitoring Instrument during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TC4). <i>Journal of Geophysical Research</i> , 2010 , 115,		57
232	Far infrared vibration-rotation-tunneling spectroscopy and internal dynamics of methane water: A prototypical hydrophobic system. <i>Journal of Chemical Physics</i> , 1994 , 100, 863-876	3.9	57
231	Prototype for in situ detection of atmospheric NO3 and N2O5 via laser-induced fluorescence. <i>Environmental Science & Environmental Science & Environme</i>	10.3	56
230	Using satellite observations of tropospheric NO ₂ columns to infer long-term trends in US NO _{<i>x</i>} emissions: the importance of accounting for the free tropospheric NO ₂ background. Atmospheric Chemistry and Physics, 2019, 19, 8863-8878	6.8	55
229	Cation-cation contact pairing in water: guanidinium. <i>Journal of Chemical Physics</i> , 2013 , 139, 035104	3.9	55
228	Photochemical production and release of gaseous NO2 from nitrate-doped water ice. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 8520-5	2.8	55
227	A comparison of observations and model simulations of NOx/NOy in the lower stratosphere. <i>Geophysical Research Letters</i> , 1999 , 26, 1153-1156	4.9	55
226	Determination of the dipole moment of ArH+ from the rotational Zeeman effect by tunable far infrared laser spectroscopy. <i>Physical Review Letters</i> , 1987 , 58, 996-999	7.4	55
225	Evidence for a nitrous acid (HONO) reservoir at the ground surface in Bakersfield, CA, during CalNex 2010. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 9093-9106	4.4	54
224	The BErkeley Atmospheric CO₂ Observation Network: initial evaluation. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 13449-13463	6.8	53
223	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6721-6744	6.8	52

(2005-2010)

222	Measurement of atmospheric nitrous acid at Bodgett Forest during BEARPEX2007. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 6283-6294	6.8	52
221	The production and persistence of R ONO₂ in the Mexico City plume. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7215-7229	6.8	51
220	Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, 547-567	6.1	50
219	Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion. <i>Applied Optics</i> , 2002 , 41, 6950-6	1.7	50
218	Ab initio potential energy surface and dynamics of HellO. <i>Journal of Chemical Physics</i> , 1994 , 101, 8680-8	686	50
217	Far-infrared vibrationEditation-tunneling spectroscopy of ArNH3: Intermolecular vibrations and effective angular potential energy surface. <i>Journal of Chemical Physics</i> , 1991 , 95, 9-21	3.9	50
216	The lifetime of nitrogen oxides in an isoprene-dominated forest. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 7623-7637	6.8	49
215	Elemental analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry. <i>Atmospheric Measurement Techniques</i> , 2010 , 3, 301-310	4	49
214	VOC reactivity in central California: comparing an air quality model to ground-based measurements. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 351-368	6.8	49
213	Chemical feedback effects on the spatial patterns of the NO_x weekend effect: a sensitivity analysis. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1-9	6.8	48
212	Local hydration environments of amino acids and dipeptides studied by X-ray spectroscopy of liquid microjets. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 21640-6	3.4	47
211	Comparisons of in situ and long path measurements of NO2 in urban plumes. <i>Journal of Geophysical Research</i> , 2003 , 108,		47
210	Measurements of N₂O₅, NO₂, and O₃ east of the San Francisco Bay. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 483-491	6.8	46
209	Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 4369-43	168 178	45
208	Gas/particle partitioning of total alkyl nitrates observed with TD-LIF in Bakersfield. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 6651-6662	4.4	44
207	Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8761-8781	6.8	44
206	Hydroxy nitrate production in the OH-initiated oxidation of alkenes. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 4297-4316	6.8	43
205	Isotope fractionation of water during evaporation without condensation. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 24391-400	3.4	43

204	Measurements of the sum of HO₂NO₂ and CH₃O₂NO₂ in the remote troposphere. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 377-384	6.8	43
203	Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NO. <i>Environmental Science & Environmental Science</i>	10.3	43
202	Testing Atmospheric Oxidation in an Alabama Forest. <i>Journals of the Atmospheric Sciences</i> , 2016 , 73, 4699-4710	2.1	42
201	Effects of daily meteorology on the interpretation of space-based remote sensing of NO₂. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 15247-15264	6.8	41
200	On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2575-2596	6.8	41
199	Anionic, Cationic, and Nonionic Surfactants in Atmospheric Aerosols from the Baltic Coast at Ask Sweden: Implications for Cloud Droplet Activation. <i>Environmental Science & Camp; Technology</i> , 2016 , 50, 2974-82	10.3	41
198	Global and regional effects of the photochemistry of CH₃: evidence from ARCTAS. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 4209-4219	6.8	41
197	Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8883-8897	6.8	39
196	Observations of NO_x, PNs, ANs, and HNO₃ at a Rural Site in the California Sierra Nevada Mountains: summertime diurnal cycles. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4879-4896	6.8	39
195	The electronic structure of the hydrated proton: a comparative X-ray absorption study of aqueous HCl and NaCl solutions. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1166-71	3.4	39
194	Observations of large reductions in the NO/NOy ratio near the mid-latitude tropopause and the role of heterogeneous chemistry. <i>Geophysical Research Letters</i> , 1996 , 23, 3223-3226	4.9	39
193	A double peak in the seasonality of California's photosynthesis as observed from space. <i>Biogeosciences</i> , 2020 , 17, 405-422	4.6	39
192	Network design for quantifying urban CO₂ emissions: assessing trade-offs between precision and network density. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 13465-13475	6.8	37
191	A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2091-2115	6.8	37
190	Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8353-8372	6.8	37
189	In Situ Measurements of OH and H02in the Upper Troposphere and Stratosphere. <i>Journals of the Atmospheric Sciences</i> , 1995 , 52, 3413-3420	2.1	37
188	Ozone production chemistry in the presence of urban plumes. <i>Faraday Discussions</i> , 2016 , 189, 169-89	3.6	37
187	Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry. <i>Geophysical Research Letters</i> , 2017 , 44, 9479-9488	4.9	36

186	The BErkeley Atmospheric CO₂ Observation Network: field calibration and evaluation of low-cost air quality sensors. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 1937-1946	4	36	
185	Sources, Sinks, and the Distribution of OH in the Lower Stratosphere Journal of Physical Chemistry A, 2001 , 105, 1543-1553	2.8	35	
184	Observations of total alkyl nitrates within the Sacramento Urban Plume		35	
183	Evaluation of simulated photochemical partitioning of oxidized nitrogen in the upper troposphere. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 275-291	6.8	34	
182	Preparing to measure the effects of the NOx SIP callmethods for ambient air monitoring of NO, NO2, NOy, and individual NOz species. <i>Journal of the Air and Waste Management Association</i> , 2002 , 52, 542-62	2.4	34	
181	The coupling of ClONO2, ClO, and NO2 in the lower stratosphere from in situ observations using the NASA ER-2 aircraft. <i>Journal of Geophysical Research</i> , 1999 , 104, 26705-26714		34	
180	Effects of temperature-dependent NO_{<i>x</i>} emissions on continental ozone production. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2601-2614	6.8	33	
179	Are models of catalytic removal of O3 by HOx accurate? Constraints from in situ measurements of the OH to HO2 ratio. <i>Geophysical Research Letters</i> , 1994 , 21, 2539-2542	4.9	33	
178	NOx Lifetime and NOy Partitioning During WINTER. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 9813-9827	4.4	32	
177	On the role of monoterpene chemistry in the remote continental boundary layer. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1225-1238	6.8	32	
176	Observations of the temperature dependent response of ozone to NO_x reductions in the Sacramento, CA urban plume. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 6945-6960	6.8	32	
175	Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1186	6.8 7-118	32 94	
174	The response of ClO radical concentrations to variations in NO2 radical concentrations in the lower stratosphere. <i>Geophysical Research Letters</i> , 1994 , 21, 2543-2546	4.9	32	
173	Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 12,36	5 \$ ·4	32	
172	Southeast Atmosphere Studies: learning from model-observation syntheses. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2615-2651	6.8	31	
171	Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign. <i>Journal of Geophysical Research</i> , 2008 , 113,		31	
170	Observations of the effects of temperature on atmospheric HNO ₃ , ANs, PNs, and NO _x : evidence for a temperature-dependent HO _x source. Atmospheric Chemistry and Physics, 2008, 8, 1867-1879	6.8	31	
169	Observations of total peroxy nitrates and aldehydes: measurement interpretation and inference of OH radical concentrations. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 1947-1960	6.8	31	

168	Comparison of modeled and observed values of NO2 and JNO2 during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission. <i>Journal of Geophysical Research</i> , 1999 , 104, 26687-26703		31	
167	A comprehensive organic nitrate chemistry: insights into the lifetime of atmospheric organic nitrates. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 15419-15436	6.8	31	
166	Determination of the evaporation coefficient of D₂O. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 6699-6706	6.8	30	
165	Measurement of the intermolecular vibrationEotation tunneling spectrum of the ammonia dimer by tunable far infrared laser spectroscopy. <i>Journal of Chemical Physics</i> , 1991 , 94, 4776-4789	3.9	30	
164	Eddy covariance fluxes and vertical concentration gradient measurements of NO and NO ₂ over a ponderosa pine ecosystem: observational evidence for within-canopy chemical removal of NO _x . Atmospheric Chemistry and Physics,	6.8	29	
163	2014 , 14, 5495-5512 Summertime buildup and decay of lightning NOx and aged thunderstorm outflow above North America. <i>Journal of Geophysical Research</i> , 2009 , 114,		29	
162	Biogenic 2-methyl-3-buten-2-ol increases regional ozone and HOx sources. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	29	
161	Measurements of CH<sub>O₂NO₂ in the upper troposphere. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 987-997	4	28	
160	Deliberating performance targets workshop: Potential paths for emerging PM and O air sensor progress. <i>Atmospheric Environment: X</i> , 2019 , 2, 100031	2.8	27	
159	Combining Bayesian methods and aircraft observations to constrain the HO[.] + NO₂ reaction rate. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 653-667	6.8	27	
158	Interpreting the H/D Isotope Fractionation of Liquid Water during Evaporation without Condensation. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 7011-7020	3.8	27	
157	An examination of the inorganic chlorine budget in the lower stratosphere. <i>Journal of Geophysical Research</i> , 2000 , 105, 1957-1971		27	
156	The weekend effect within and downwind of Sacramento: Part 2. Observational evidence for chemical and dynamical contributions		27	
155	Space-based observations of fire NO_x emission coefficients: a global biome-scale comparison. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 2509-2524	6.8	26	
154	Observed Impacts of COVID-19 on Urban CO2 Emissions. <i>Geophysical Research Letters</i> , 2020 , 47, e202	0G4@90	03⁄3	
153	Evaluation of the use of a commercially available cavity ringdown absorption spectrometer for measuring NO2 in flight, and observations over the Mid-Atlantic States, during DISCOVER-AQ. <i>Journal of Atmospheric Chemistry</i> , 2015 , 72, 503-521	3.2	25	
152	Flight Deployment of a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen Oxide Species. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 7670	4.4	25	
151	Low temperatures enhance organic nitrate formation: evidence from observations in the 2012 Uintah Basin Winter Ozone Study. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 12441-12454	6.8	25	

150	The budget and partitioning of stratospheric chlorine during the 1997 Arctic summer. <i>Journal of Geophysical Research</i> , 1999 , 104, 26653-26665		25	
149	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2341-2361	6.8	24	
148	Observed NO/NO2 Ratios in the Upper Troposphere Imply Errors in NO-NO2-O3 Cycling Kinetics or an Unaccounted NOx Reservoir. <i>Geophysical Research Letters</i> , 2018 , 45, 4466-4474	4.9	24	
147	Laboratory evaluation of a novel thermal dissociation chemiluminescence method for in situ detection of nitrous acid. <i>Atmospheric Environment</i> , 2007 , 41, 3993-4001	5.3	24	
146	Overview: The stratospheric photochemistry aerosols and dynamics expedition (SPADE) and Airborne Arctic Stratospheric Expedition II (AASE-II). <i>Geophysical Research Letters</i> , 1994 , 21, 2535-2538	4.9	24	
145	The Berkeley High Resolution Tropospheric NO₂ product. <i>Earth System Science Data</i> , 2018 , 10, 2069-2095	10.5	24	
144	ClNO2 Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 12,994	4.4	24	
143	An Atmospheric Constraint on the NO2 Dependence of Daytime Near-Surface Nitrous Acid (HONO). <i>Environmental Science & Environmental Science & Environm</i>	10.3	23	
142	On the evaporation of ammonium sulfate solution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 18897-901	11.5	23	
141	Laboratory measurement of the pure rotational spectrum of vibrationally excited HCO(+) (nu2 = 1) by far-infrared laser sideband spectroscopy. <i>Astrophysical Journal</i> , 1987 , 316, L45	4.7	23	
140	Observations of a seasonal cycle in NOx emissions from fires in African woody savannas. <i>Geophysical Research Letters</i> , 2013 , 40, 1451-1455	4.9	22	
139	The NOxHNO3 System in the Lower Stratosphere: Insights from In Situ Measurements and Implications of the JHNO3[OH] Relationship. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 1521-1534	2.8	22	
138	Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 4272-4295	4.4	20	
137	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 1468-78	2.8	20	
136	Evolution and stoichiometry of heterogeneous processing in the Antarctic stratosphere. <i>Journal of Geophysical Research</i> , 1997 , 102, 13235-13253		20	
135	Anthropogenic control over wintertime oxidation of atmospheric pollutants. <i>Geophysical Research Letters</i> , 2019 , 46, 14826-14835	4.9	20	
134	Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 573-583	6.8	19	
133	Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity. <i>Atmospheric Environment</i> , 2016 , 128, 28-44	5.3	19	

132	Effect of Surface Active Ions on the Rate of Water Evaporation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11880-11885	3.8	19
131	Quantitative constraints on the atmospheric chemistry of nitrogen oxides: An analysis along chemical coordinates. <i>Journal of Geophysical Research</i> , 2000 , 105, 24283-24304		19
130	Vapor-pressure pathways initiate but hydrolysis products dominate the aerosol estimated from organic nitrates. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1426-1437	3.2	18
129	Evaporation kinetics of aqueous acetic acid droplets: effects of soluble organic aerosol components on the mechanism of water evaporation. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 116	;34 - 9	18
128	Evaluation of version 3.0B of the BEHR OMI NO₂ product. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 129-146	4	17
127	Quantification of the effect of modeled lightning NO ₂ on UV\(\mathbb{U}\)isible air mass factors. Atmospheric Measurement Techniques, 2017, 10, 4403-4419	4	17
126	Comparison of N₂O₅ mixing ratios during NO3Comp 2007 in SAPHIR. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 2763-2777	4	17
125	Photochemistry of NO2 in Earth's stratosphere: constraints from observations. <i>Chemical Reviews</i> , 2003 , 103, 4985-98	68.1	17
124	Properties of Seawater Surfactants Associated with Primary Marine Aerosol Particles Produced by Bursting Bubbles at a Model Air-Sea Interface. <i>Environmental Science & Environmental </i>	94137	16
123	The role of HOx in super- and subsonic aircraft exhaust plumes. <i>Geophysical Research Letters</i> , 1997 , 24, 65-68	4.9	16
122	Ozone destruction and production rates between spring and autumn in the Arctic stratosphere. <i>Geophysical Research Letters</i> , 2000 , 27, 2605-2608	4.9	16
121	Establishing the Dependence of [HO2]/[OH] on Temperature, Halogen Loading, O3, and NOx Based on in Situ Measurements from the NASA ER-2 <i>Journal of Physical Chemistry A</i> , 2001 , 105, 1535-1542	2.8	16
120	Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006		16
119	Measurements of NO and NO₂ exchange between the atmosphere and <i>Quercus agrifolia</i>. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 14161-14173	6.8	16
118	Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 1911-1926	4	15
117	Modulation of hydroxyl variability by ENSO in the absence of external forcing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8931-8936	11.5	15
116	Modeling NHNO Over the San Joaquin Valley During the 2013 DISCOVER-AQ Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 4727-4745	4.4	15
115	Assimilation of satellite NO₂ observations at high spatial resolution using OSSEs. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 7067-7081	6.8	15

	114	A Method to Determine the Spatial Resolution Required to Observe Air Quality From Space. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2007 , 45, 1308-1314	8.1	15
	113	Insights into hydroxyl measurements and atmospheric oxidation in a California forest		15
	112	The Role of Temperature and NO in Ozone Trends in the Los Angeles Basin. <i>Environmental Science & Environmental Science</i>	10.3	15
	111	Nitrogen oxides in the global upper troposphere: interpreting cloud-sliced NO₂ observations from the OMI satellite instrument. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 17017-17027	6.8	15
	110	Assessment of NO observations during DISCOVER-AQ and KORUS-AQ field campaigns. <i>Atmospheric Measurement Techniques</i> , 2020 , 13,	4	14
:	109	The changing role of organic nitrates in the removal and transport of NO_{<i>x</i>}. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 267-279	6.8	14
	108	Observations of atmosphere-biosphere exchange of total and speciated peroxynitrates: nitrogen fluxes and biogenic sources of peroxynitrates. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 9763-9773	6.8	14
:	107	Observing local CO ₂ sources using low-cost, near-surface urban monitors. Atmospheric Chemistry and Physics, 2018, 18, 13773-13785	6.8	14
	106	Wintertime Overnight NOx Removal in a Southeastern United States Coal-fired Power Plant Plume: A Model for Understanding Winter NOx Processing and its Implications. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 1412-1425	4.4	13
:	105	Observation of rates and products in the reaction of NO3 with submicron squalane and squalene aerosol. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 882-92	3.6	13
	104	On the export of reactive nitrogen from Asia: NO_x partitioning and effects on ozone. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4617-4630	6.8	13
:	103	Trends in OMI NO ₂ observations over the US: effects of emission control technology and the economic recession		13
	102	Concentrations and Adsorption Isotherms for Amphiphilic Surfactants in PM Aerosols from Different Regions of Europe. <i>Environmental Science & Environmental Science & Environm</i>	10.3	12
;	101	Observation of slant column NO₂ using the super-zoom mode of AURA-OMI. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 1929-1935	4	12
	100	Consistency of ozone and nitrogen oxides standards at tropospherically relevant mixing ratios. Journal of the Air and Waste Management Association, 2005 , 55, 1473-9	2.4	12
	99	Comparing atmospheric [HO2]/[OH] to modeled [HO2]/[OH]: Identifying discrepancies with reaction rates. <i>Geophysical Research Letters</i> , 2001 , 28, 967-970	4.9	12
	98	Nitrogen oxide chemistry in an urban plume: investigation of the chemistry of peroxy and multifunctional organic nitrates with a Lagrangian model		12
	97	Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. <i>Remote Sensing</i> , 2018 , 10, 1789	5	12

96	Influence of surfactants on growth of individual aqueous coarse mode aerosol particles. <i>Aerosol Science and Technology</i> , 2018 , 52, 459-469	3.4	11
95	Particulate organic nitrates observed in an oil and natural gas production region during wintertime. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 9313-9325	6.8	11
94	Lightning NO₂ simulation over the contiguous US and its effects on satellite NO₂ retrievals. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 13067-13078	6.8	11
93	Characterizing CO and NOy Sources and Relative Ambient Ratios in the Baltimore Area Using Ambient Measurements and Source Attribution Modeling. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 3304-3320	4.4	10
92	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations		10
91	Microphysics and chemistry of sulphate aerosols at warm stratospheric temperatures. <i>Journal of Geophysical Research</i> , 1999 , 104, 26737-26751		9
90	NO_x emissions, isoprene oxidation pathways, vertical mixing, and implications for surface ozone in the Southeast United States 2016 ,		8
89	Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011		8
88	The weekend effect within and downwind of Sacramento: Part 1. Observations of ozone, nitrogen oxides, and VOC reactivity		8
87	Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 14493-14510	6.8	8
86	Importance of biogenic volatile organic compounds to acyl peroxy nitrates (APN) production in the southeastern US during SOAS 2013. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1867-1880	6.8	7
85	Observing U.S. Regional Variability in Lightning NO2 Production Rates. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD031362	4.4	7
84	Impact of OA on the Temperature Dependence of PM 2.5 in the Los Angeles Basin. <i>Environmental Science & Environmental Science </i>	10.3	7
83	A'model-based analysis of foliar NO_{<i>x</i>} deposition. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 2123-2141	6.8	6
82	Laboratory measurements of stomatal NO₂ deposition to native California trees and the role of forests in the NO_x cycle. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 14023-14041	6.8	6
81	Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface obser	vation	s 6
80	Marine Aerosol Production via Detrainment of Bubble Plumes Generated in Natural Seawater With a Forced-Air Venturi. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 10931-10950	4.4	5
79	Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality		5

78	A mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints		5
77	On the observed response of ozone to NO _x and VOC reactivity reductions in San Joaquin Valley California 1995present		5
76	Eddy covariance fluxes and vertical concentration gradient measurements of NO and NO ₂ over a ponderosa pine ecosystem: observational evidence for within canopy removal of NO _x		5
75	Observations of total RONO ₂ over the boreal forest: NO _x sinks and HNO ₃ sources		5
74	Organic nitrate aerosol formation via NO ₃ + BVOC in the Southeastern US		5
73	Observations of HNO ₃ , AN, PN and NO ₂ fluxes: evidence for rapid HO _x chemistry within a pine forest canopy		5
72	Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields		5
71	Direct estimates of biomass burning NO_{<i>x</i>} emissions and lifetimes using daily observations from TROPOMI. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 15569-15	5.8 5 8 7	5
70	Accelerated reduction of air pollutants in China, 2017-2020. <i>Science of the Total Environment</i> , 2022 , 803, 150011	10.2	5
69	Comparison of Airborne Reactive Nitrogen Measurements During WINTER. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 10483-10502	4-4	4
68	Observation of slant column NO₂ using the super-zoom mode of AURA-OMI 2011 ,		4
67	Leaf Stomatal Control over Acyl Peroxynitrate Dry Deposition to Trees. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 2162-2170	3.2	4
66	Observations of the effects of temperature on atmospheric HNO ₃ , ANs, BNs, and NO _x : evidence for a temperature dependent HO _x source		4
65	A product study of the isoprene+NO ₃ reaction		4
64	Fluorescence Methods189-228		3
63	Optical cavity resonances in water micro-droplets: Implications for shortwave cloud forcing. Geophysical Research Letters, 2004 , 31, n/a-n/a	4.9	3
62	Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS. <i>Journal of Geophysical Research</i> , 2001 , 106, 1713-1732		3
61	Hydroxy nitrate production in the OH-initiated oxidation of alkenes		3

60 Assessment of NO<sub>2</sub> observations during DISCOVER-AQ and KORUS-AQ field campaigns3

59	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol 2016 ,		3
58	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC⁴RS) and ground-based (SOAS) observations in the Southeast US 2016 ,		3
57	The Berkeley Environmental Air-quality and CO ₂ Network: field calibrations of sensor temperature dependence and assessment of network scale CO ₂ accuracy. Atmospheric Measurement Techniques, 2021, 14, 5487-5500	4	3
56	Observed impacts of COVID-19 on urban CO2 emissions		3
55	Evidence of Nighttime Production of Organic Nitrates During SEAC4RS, FRAPP∏and KORUS-AQ. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL087860	4.9	2
54	A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry. <i>Atmospheric Measurement Techniques</i> , 2022 , 15, 459-483	4	2
53	Extreme events driving year-to-year differences in gross primary productivity across the US. <i>Biogeosciences</i> , 2021 , 18, 6579-6588	4.6	2
52	Evolution of NO _{<i>x</i>} in the Denver Urban Plume during the Front Range Air Pollution and Photochemistry Experiment		2
51	Using satellite observations of tropospheric NO ₂ columns to infer long-term trends in US NO _x emissions: the importance of accounting for the free tropospheric NO ₂ background		2
50	Interannual variability in soil nitric oxide emissions over the United States as viewed from space		2
49	Evaluation of simulated photochemical partitioning of oxidized nitrogen in the upper troposphere		2
48	A high spatial resolution retrieval of NO ₂ column densities from OMI: method and evaluation		2
47	Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007		2
46	On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol		2
45	VOC reactivity in central California: comparing an air quality model to ground-based measurements		2
44	Airborne observations of total RONO ₂ : new constraints on the yield and lifetime of isoprene nitrates		2
43	Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN, and MPAN) above a Ponderosa pine forest		2

42	Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B	2
41	The BErkeley Atmospheric CO ₂ Observation Network: Field Calibration and Evaluation of Low-cost Air Quality Sensors	2
40	Evaluation of version 3.0B of the BEHR OMI NO ₂ product	2
39	Intercomparison of measurements of NO ₂ concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign	2
38	Data Quality and Validation of Satellite Measurements of Tropospheric Composition. <i>Physics of Earth and Space Environments</i> , 2011 , 315-364	2
37	The potential for geostationary remote sensing of NO₂ to improve weather prediction. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 9573-9583	2
36	Combining Machine Learning and Satellite Observations to Predict Spatial and Temporal Variation of near Surface OH in North American Cities <i>Environmental Science & Description</i> (10.3)	, 2
35	Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 4253-4275	2
34	Assimilation of satellite NO ₂ observations at high spatial resolution 2016,	1
33	A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid 2011 ,	1
32	Comparison of N₂O₅ mixing ratios during NO3Comp 2007 in SAPHIR 2012 ,	1
31	Leaf Stomatal Uptake of Alkyl Nitrates. <i>Environmental Science and Technology Letters</i> , 2022 , 9, 186-190 11	1
30	Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations	1
29	Measurement of atmospheric nitrous acid at Blodgett Forest during BEARPEX2007	1
28	Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons	1
27	Effects of model spatial resolution on the interpretation of satellite NO ₂ observatio	ns 1
26	Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B campaign: potential evidence for unmeasured and multi-generation volatile organic carbon oxidation processing	1
25	Effects of biogenic nitrate chemistry on the NO _x lifetime in remote continental regions	1

24	Importance of biogenic precursors to the budget of organic nitrates during BEARPEX 2009: observations of multifunctional organic nitrates by CIMS and TD-LIF	1
23	Space-based observations of fire NO _x emission coefficients: a global biome-scale comparison	1
22	On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley California	1
21	Low temperatures enhance organic nitrate formation: evidence from observations in the 2012 Uintah Basin Winter Ozone Study	1
20	Particulate organic nitrates observed in an oil and natural gas production region during wintertime	1
19	Determination of the evaporation coefficient of D ₂ O	1
18	Closing the peroxy acetyl (PA) radical budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007	1
17	Observations of NO_x, B Ns, B Ns, and HNO₃ at a rural site in the California Sierra Nevada Mountains: summertime diurnal cycles	1
16	Trans-Pacific transport and evolution of aerosols and trace gases from Asia during the INTEX-B field campa	aign 1
15	Alkyl nitrate production and persistence in the Mexico City Plume	1
14	Total peroxy nitrates (PNs) in the atmosphere: the thermal dissociation-laser induced fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements	1
13	Chemistry of hydrogen oxide radicals (HO _x) in the Arctic troposphere in spring	1
12	Observations of the temperature dependent response of ozone to NO _x reductions in the Sacramento, CA urban plume	1
11	Characterization of wildfire NO _x emissions using MODIS fire radiative power and OMI tropospheric NO ₂ columns	1
10	Observations of atmosphere-biosphere exchange of total and speciated peroxynitrates: nitrogen fluxes and biogenic sources of peroxynitrates	1
9	Space-Borne Estimation of Volcanic Sulfate Aerosol Lifetime. <i>Journal of Geophysical Research D:</i> Atmospheres, 2021 , 126, e2020JD033883	ļ 1
8	Network design for quantifying urban CO₂ emissions: Assessing trade-offs between precision and network density 2016 ,	1
7	Effects of daily meteorology on the interpretation of space-based remote sensing of NO₂ 2016 ,	1

LIST OF PUBLICATIONS

6 The Lifetime of Nitrogen Oxides in an Isoprene Dominated Forest 2016, 1 Assessing vehicle fuel efficiency using a dense network of CO<sub&gt;2&lt;/sub&gt; observations. Atmospheric Chemistry and Physics, 6.8 5 2022, 22, 3891-3900 Observing Annual Trends in Vehicular CO Emissions.. Environmental Science & Emp; Technology, 2022 10.3 1 Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ. Environmental Science & Technology, 2021, Estimate of OH trends over one decade in North American cities.. Proceedings of the National 2 11.5 1 Academy of Sciences of the United States of America, 2022, 119, e2117399119 Direct Retrieval of NO2 Vertical Columns from UV-Vis (390-495 nm) Spectral Radiances Using a Neural Network. Journal of Remote Sensing, 2022, 2022, 1-17