
## Lee J Hubble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7741273/publications.pdf Version: 2024-02-01



I FF I HURRI F

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus<br>Chemical Threats. ACS Sensors, 2017, 2, 553-561.                                                     | 4.0 | 260       |
| 2  | Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices. Accounts of Chemical<br>Research, 2018, 51, 2820-2828.                                                                          | 7.6 | 214       |
| 3  | Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sensors and Actuators B: Chemical, 2019, 296, 126422.                                                      | 4.0 | 134       |
| 4  | Simultaneous detection of salivary Δ9-tetrahydrocannabinol and alcohol using a Wearable<br>Electrochemical Ring Sensor. Talanta, 2020, 211, 120757.                                                 | 2.9 | 95        |
| 5  | Ionic Liquid-Modified Disposable Electrochemical Sensor Strip for Analysis of Fentanyl. Analytical<br>Chemistry, 2019, 91, 3747-3753.                                                               | 3.2 | 70        |
| 6  | Gold Nanoparticle Chemiresistor Sensor Array that Differentiates between Hydrocarbon Fuels<br>Dissolved in Artificial Seawater. Analytical Chemistry, 2010, 82, 3788-3795.                          | 3.2 | 55        |
| 7  | Liquid metals for tuning gas sensitive layers. Journal of Materials Chemistry C, 2019, 7, 6375-6382.                                                                                                | 2.7 | 46        |
| 8  | Sensing at Your Fingertips: Gloveâ€based Wearable Chemical Sensors. Electroanalysis, 2019, 31, 428-436.                                                                                             | 1.5 | 43        |
| 9  | Multifunctional water-soluble molecular capsules based on p-phosphonic acid calix[5]arene.<br>Chemical Communications, 2011, 47, 7353.                                                              | 2.2 | 38        |
| 10 | High-Throughput Fabrication and Screening Improves Gold Nanoparticle Chemiresistor Sensor<br>Performance. ACS Combinatorial Science, 2015, 17, 120-129.                                             | 3.8 | 32        |
| 11 | Performance of graphene, carbon nanotube, and gold nanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons in water. Journal of Nanoparticle Research, 2014, 16, 1.          | 0.8 | 29        |
| 12 | Selective diameter uptake of single-walled carbon nanotubes in water using phosphonated calixarenes<br>and â€~extended arm' sulfonated calixarenes. Journal of Materials Chemistry, 2008, 18, 5961. | 6.7 | 27        |
| 13 | Characterization of the Sensor Response of Gold Nanoparticle Chemiresistors. Journal of Physical<br>Chemistry C, 2010, 114, 17529-17534.                                                            | 1.5 | 20        |
| 14 | Gold nanoparticle chemiresistors operating in biological fluids. Lab on A Chip, 2012, 12, 3040.                                                                                                     | 3.1 | 20        |
| 15 | Detection of bacterial metabolites for the discrimination of bacteria utilizing gold nanoparticle chemiresistor sensors. Sensors and Actuators B: Chemical, 2015, 220, 895-902.                     | 4.0 | 20        |
| 16 | Nanofibers of Fullerene C60 through Interplay of Ball-and-Socket Supermolecules. Chemistry - A<br>European Journal, 2007, 13, 6755-6760.                                                            | 1.7 | 16        |
| 17 | Dynamic response of gold nanoparticle chemiresistors to organic analytes in aqueous solution.<br>Physical Chemistry Chemical Physics, 2011, 13, 18208.                                              | 1.3 | 16        |
| 18 | Quantifying BTEX in aqueous solutions with potentially interfering hydrocarbons using a partially selective sensor array. Analyst, The, 2015, 140, 3233-3238.                                       | 1.7 | 16        |

LEE J HUBBLE

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Quantifying mixtures of hydrocarbons dissolved in water with a partially selective sensor array using random forests analysis. Sensors and Actuators B: Chemical, 2014, 202, 279-285.                                      | 4.0 | 15        |
| 20 | Bare palladium nano-rosettes for real-time high-performance and facile hydrogen sensing. Sensors and Actuators B: Chemical, 2010, 150, 291-295.                                                                            | 4.0 | 13        |
| 21 | Flow-controlled synthesis of gold nanoparticles in a biphasic system with inline liquid–liquid separation. Reaction Chemistry and Engineering, 2020, 5, 356-366.                                                           | 1.9 | 13        |
| 22 | Solvent-induced modulation of the chemical sensing performance of gold nanoparticle film chemiresistors. Sensors and Actuators B: Chemical, 2019, 284, 316-322.                                                            | 4.0 | 7         |
| 23 | Chemical Sensor Array That Can Differentiate Complex Hydrocarbon Mixtures Dissolved in Seawater.<br>Sensor Letters, 2011, 9, 609-611.                                                                                      | 0.4 | 7         |
| 24 | Transistorâ€Like Modulation of Gold Nanoparticle Film Conductivity Using Hydrophobic Ions. Advanced<br>Materials Interfaces, 2014, 1, 1400062.                                                                             | 1.9 | 5         |
| 25 | Influence of Gold Nanoparticle Film Porosity on the Chemiresistive Sensing Performance.<br>Electroanalysis, 2013, 25, 2313-2320.                                                                                           | 1.5 | 4         |
| 26 | Electrical noise in gold nanoparticle chemiresistors: Effects of measurement environment and organic linker properties. , 2010, , .                                                                                        |     | 3         |
| 27 | A water-soluble fluoroionophore: p-(4-sulfonatophenyl)calix[8]arene. New Journal of Chemistry, 2012, 36, 1070.                                                                                                             | 1.4 | 2         |
| 28 | Detecting and discriminating pyrethroids with chemiresistor sensors. Environmental Chemistry, 2019, 16, 553.                                                                                                               | 0.7 | 1         |
| 29 | Strong enhancement of gold nanoparticle chemiresistor response to low-partitioning organic<br>analytes induced by pre-exposure to high partitioning organics. Physical Chemistry Chemical Physics,<br>2020, 22, 9117-9123. | 1.3 | 1         |
| 30 | Sensor System for Directly Detecting and Identifying Hydrocarbons in Water. , 2012, , .                                                                                                                                    |     | 0         |
| 31 | Using Chemiresistor Sensor Arrays to Test Petrol Station Groundwater Samples for Hydrocarbon<br>Pollutants. ECS Meeting Abstracts, 2020, MA2020-01, 2204-2204.                                                             | 0.0 | 0         |
| 32 | Wearable Electrochemical Sensors for Rapid and on-Site Chemical Threat Assessment. ECS Meeting Abstracts, 2020, MA2020-01, 2003-2003.                                                                                      | 0.0 | 0         |