Bo-Geng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7741226/publications.pdf

Version: 2024-02-01

169 papers 4,658 citations

38 h-index 58 g-index

177 all docs

177 docs citations

177 times ranked

4688 citing authors

#	Article	IF	Citations
1	Ultrafast Digital Printing toward 4D Shape Changing Materials. Advanced Materials, 2017, 29, 1605390.	21.0	348
2	A General Approach Towards Thermoplastic Multishapeâ€Memory Polymers via Sequence Structure Design. Advanced Materials, 2013, 25, 743-748.	21.0	168
3	Polystyrene- <i>block</i> -poly(<i>n</i> -butyl acrylate)- <i>block</i> -polystyrene Triblock Copolymer Thermoplastic Elastomer Synthesized via RAFT Emulsion Polymerization. Macromolecules, 2010, 43, 7472-7481.	4.8	119
4	Effect of Reversible Additionâ [°] Fragmentation Transfer (RAFT) Reactions on (Mini)emulsion Polymerization Kinetics and Estimate of RAFT Equilibrium Constant. Macromolecules, 2006, 39, 1328-1337.	4.8	115
5	Ab Initio Batch Emulsion RAFT Polymerization of Styrene Mediated by Poly(acrylic acid- <i>b</i> -styrene) Trithiocarbonate. Macromolecules, 2009, 42, 6414-6421.	4.8	115
6	Programmed Synthesis of Copolymer with Controlled Chain Composition Distribution via Semibatch RAFT Copolymerization. Macromolecules, 2007, 40, 849-859.	4.8	98
7	Preparation and SO ₂ Sorption/Desorption Behavior of an Ionic Liquid Supported on Porous Silica Particles. Industrial & Engineering Chemistry Research, 2009, 48, 2142-2148.	3.7	93
8	Modification of Poly(ethylene 2,5-furandicarboxylate) with Biobased 1,5-Pentanediol: Significantly Toughened Copolyesters Retaining High Tensile Strength and O ₂ Barrier Property. Biomacromolecules, 2019, 20, 353-364.	5.4	92
9	Polyethyleneimine-Modified UiO-66-NH ₂ (Zr) Metal–Organic Frameworks: Preparation and Enhanced CO ₂ Selective Adsorption. ACS Omega, 2019, 4, 3188-3197.	3.5	91
10	Control of gradient copolymer composition in ATRP using semibatch feeding policy. AICHE Journal, 2007, 53, 174-186.	3.6	89
11	Reversible Polycondensation-Termination Growth of Covalent-Organic-Framework Spheres, Fibers, and Films. Matter, 2019, 1, 1592-1605.	10.0	84
12	Design and Control of Copolymer Composition Distribution in Living Radical Polymerization Using Semi-Batch Feeding Policies: A Model Simulation. Macromolecular Theory and Simulations, 2006, 15, 356-368.	1.4	77
13	Switchable Block Copolymer Surfactants for Preparation of Reversibly Coagulatable and Redispersible Poly(methyl methacrylate) Latexes. Macromolecules, 2013, 46, 1261-1267.	4.8	73
14	A Facile Route to Synthesize Highly Uniform Nanocapsules: Use of Amphiphilic Poly(acrylic) Tj ETQq0 0 0 rgBT /Ov Macromolecular Rapid Communications, 2007, 28, 868-874.	erlock 10 3.9	Tf 50 227 Tc 71
15	Semibatch RAFT polymerization for producing ST/BA copolymers with controlled gradient composition profiles. AICHE Journal, 2008, 54, 1073-1087.	3.6	67
16	Synthesis and SO2Absorption/Desorption Properties of Poly $(1,1,3,3$ -tetramethylguanidine acrylate). Macromolecules, 2007, 40, 3388-3393.	4.8	65
17	Kinetics and Modeling of Semi-Batch RAFT Copolymerization with Hyperbranching. Macromolecules, 2012, 45, 28-38.	4.8	59
18	Synthesis and Characterization of Hyperbranched Polyacrylamide Using Semibatch Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules, 2010, 43, 4062-4069.	4.8	56

#	Article	IF	CITATIONS
19	High Molecular Weight Polyesters Derived from Biobased 1,5-Pentanediol and a Variety of Aliphatic Diacids: Synthesis, Characterization, and Thermo-Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 6159-6166.	6.7	56
20	Progress in reactor engineering of controlled radical polymerization: a comprehensive review. Reaction Chemistry and Engineering, 2016, 1, 23-59.	3.7	53
21	Kinetics and Modeling of Solution ARGET ATRP of Styrene, Butyl Acrylate, and Methyl Methacrylate. Macromolecular Reaction Engineering, 2011, 5, 467-478.	1.5	52
22	Palladium(II)@Zirconiumâ€Based Mixed‣inker Metal–Organic Frameworks as Highly Efficient and Recyclable Catalysts for Suzuki and Heck Crossâ€Coupling Reactions. ChemCatChem, 2016, 8, 3261-3271.	3.7	50
23	Engineering Elastic ZIFâ€8â€Sponges for Oil–Water Separation. Advanced Materials Interfaces, 2017, 4, 1700560.	3.7	49
24	Prediction of the average number of radicals per particle for emulsion polymerization. Journal of Polymer Science Part A, 1993, 31, 2397-2402.	2.3	48
25	Tertiary Amine â€" Enhanced Activity of ATRP Catalysts CuBr/TPMA and CuBr/Me ₆ TREN. Macromolecular Rapid Communications, 2008, 29, 1834-1838.	3.9	48
26	Facile synthesis of novel HTPBs and EHTPBs with high cis-1,4 content and extremely low glass transition temperature. Polymer, 2015, 67, 208-215.	3.8	47
27	A Comprehensive Review on Controlled Synthesis of Long-Chain Branched Polyolefins: Part 1, Single Catalyst Systems. Macromolecular Reaction Engineering, 2016, 10, 156-179.	1.5	47
28	High <i>cis</i> -1,4 Hydroxyl-Terminated Polybutadiene-Based Polyurethanes with Extremely Low Glass Transition Temperature and Excellent Mechanical Properties. Industrial & Engineering Chemistry Research, 2016, 55, 1582-1589.	3.7	46
29	DBU-catalyzed biobased poly(ethylene 2,5-furandicarboxylate) polyester with rapid melt crystallization: synthesis, crystallization kinetics and melting behavior. RSC Advances, 2016, 6, 101578-101586.	3.6	45
30	Preparation of Hydroxyl-Terminated Polybutadiene with High Cis-1,4 Content. Industrial & Engineering Chemistry Research, 2014, 53, 17884-17893.	3.7	44
31	Postsynthetic modification of mixed-linker metal–organic frameworks for ethylene oligomerization. RSC Advances, 2014, 4, 62343-62346.	3.6	44
32	Polyethylenimine-Grafted HKUST-Type MOF/PolyHIPE Porous Composites (PEI@PGD-H) as Highly Efficient CO ₂ Adsorbents. Industrial & Engineering Chemistry Research, 2019, 58, 4257-4266.	3.7	44
33	Biobased Poly(ethylene- <i>co</i> -hexamethylene 2,5-furandicarboxylate) (PEHF) Copolyesters with Superior Tensile Properties. Industrial & Engineering Chemistry Research, 2018, 57, 13094-13102.	3.7	43
34	Modelâ€based design and synthesis of gradient MMA/ <i>t</i> BMA copolymers by computerâ€programmed semibatch atom transfer radical copolymerization. Journal of Polymer Science Part A, 2009, 47, 69-79.	2.3	42
35	Dynamic mechanical and rheological properties of metallocene-catalyzed long-chain-branched ethylene/propylene copolymers. Polymer, 2004, 45, 5497-5504.	3.8	41
36	Preparation and SO2 Absorption/Desorption Properties of Crosslinked Poly(1,1,3,3-Tetramethylguanidine Acrylate) Porous Particles. Macromolecular Rapid Communications, 2006, 27, 1949-1954.	3.9	41

#	Article	IF	CITATIONS
37	Oneâ€step synthesis of hyperbranched polyethylene macroinitiator and its block copolymers with methyl methacrylate or styrene via ATRP. Journal of Polymer Science Part A, 2010, 48, 3024-3032.	2.3	41
38	RAFT miniemulsion polymerization targeting to polymer of higher molecular weight. Journal of Polymer Science Part A, 2005, 43, 4972-4979.	2.3	40
39	Synthesis and Thermomechanical and Rheological Properties of Biodegradable Long-Chain Branched Poly(butylene succinate-co-butylene terephthalate) Copolyesters. Industrial & Engineering Chemistry Research, 2014, 53, 10380-10386.	3.7	38
40	Toward Covalent Organic Framework Metastructures. Journal of the American Chemical Society, 2021, 143, 5003-5010.	13.7	37
41	Butyl acrylate RAFT polymerization in miniemulsion. Journal of Polymer Science Part A, 2007, 45, 2304-2315.	2.3	36
42	Hyperbranched Polyethylenes Encapsulating Self-Supported Palladium(II) Species as Efficient and Recyclable Catalysts for Heck Reaction. Macromolecules, 2013, 46, 72-82.	4.8	33
43	Structure analysis of ethylene/1-octene copolymers synthesized from living coordination polymerization. European Polymer Journal, 2014, 54, 160-171.	5.4	33
44	Polyhydroxyurethanes (PHUs) Derived from Diphenolic Acid and Carbon Dioxide and Their Application in Solvent- and Water-Borne PHU Coatings. Industrial & Engineering Chemistry Research, 2017, 56, 14089-14100.	3.7	32
45	Preparation of Comb-Shaped Polyolefin Elastomers Having Ethylene/1-Octene Copolymer Backbone and Long Chain Polyethylene Branches via a Tandem Metallocene Catalyst System. Macromolecules, 2018, 51, 8790-8799.	4.8	32
46	Fabrication of metal-organic framework-based nanofibrous separator via one-pot electrospinning strategy. Nano Research, 2021, 14, 1465-1470.	10.4	32
47	Kinetics of thein situ polymerization andin situ compatibilization of poly(propylene) and polyamide 6 blends. Journal of Applied Polymer Science, 2004, 91, 1498-1504.	2.6	31
48	Effect of rate retardation in RAFT grafting polymerization from silicon wafer surface. Journal of Polymer Science Part A, 2008, 46, 970-978.	2.3	30
49	Collectable and Recyclable Mussel-Inspired Poly(ionic liquid)-Based Sorbents for Ultrafast Water Treatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 2829-2835.	6.7	30
50	A conveniently synthesized polyethylene gel encapsulating palladium nanoparticles as a reusable high-performance catalyst for Heck and Suzuki coupling reactions. Journal of Materials Chemistry A, 2013, 1, 15469.	10.3	29
51	Interconnected Porous Monolith Prepared via UiOâ€66 Stabilized Pickering High Internal Phase Emulsion Template. Chemistry - A European Journal, 2018, 24, 16426-16431.	3.3	28
52	Core-Shell and Yolk-Shell Covalent Organic Framework Nanostructures with Size-Selective Permeability. Cell Reports Physical Science, 2020, 1, 100062.	5.6	28
53	Dynamically Cross-Linked Polyolefin Elastomers with Highly Improved Mechanical and Thermal Performance. Macromolecules, 2021, 54, 10381-10387.	4.8	28
54	Modelâ€Based Production of Polymer Chains Having Precisely Designed Endâ€toâ€End Gradient Copolymer Composition and Chain Topology Distributions in Controlled Radical Polymerization, A Review. Macromolecular Reaction Engineering, 2015, 9, 409-417.	1. 5	27

#	Article	IF	Citations
55	Synthesis of ethylene-1-hexene copolymers from ethylene stock by tandem action of bis(2-dodecylsulfanyl-ethyl) amine-CrCl3 and Et(Ind)2ZrCl2. Journal of Polymer Science Part A, 2007, 45, 3562-3569.	2.3	26
56	Interfacial polycondensation of diphenolic acid and isophthaloyl chloride. Journal of Applied Polymer Science, 2008, 108, 3586-3592.	2.6	26
57	Living copolymerization of ethylene/1â€octene with fluorinated Flâ€Ti catalyst. Journal of Polymer Science Part A, 2013, 51, 405-414.	2.3	26
58	Targeting Copolymer Composition Distribution via Model-Based Monomer Feeding Policy in Semibatch RAFT Mini-Emulsion Copolymerization of Styrene and Butyl Acrylate. Industrial & Engineering Chemistry Research, 2014, 53, 7321-7332.	3.7	26
59	Synthesis and nonisothermal reaction of a novel acrylonitrile-capped poly(propyleneimine) dendrimer with epoxy resin. Journal of Thermal Analysis and Calorimetry, 2011, 103, 685-692.	3.6	24
60	RAFT Ab Initio Emulsion Polymerization of Styrene Using Poly(acrylic acid)-b-polystyrene Trithiocarbonate of Various Structures as Mediator and Surfactant. Macromolecular Reaction Engineering, 2014, 8, 696-705.	1.5	24
61	Hydrolytic degradation of biobased poly(butylene succinateâ€ <i>co</i> â€furandicarboxylate) and poly(butylene adipateâ€ <i>co</i> â€furandicarboxylate) copolyesters under mild conditions. Journal of Applied Polymer Science, 2017, 134, .	2.6	24
62	A Comprehensive Review on Controlled Synthesis of Longâ€Chain Branched Polyolefins: Part 3, Characterization of Longâ€Chain Branched Polymers. Macromolecular Reaction Engineering, 2017, 11, 1600012.	1.5	24
63	Design and Synthesis of a Well-Controlled Mechanoluminescent Polymer System Based on Fluorescence Resonance Energy Transfer with Spiropyran as a Force-Activated Acceptor and Nitrobenzoxadiazole as a Fluorescent Donor. Macromolecules, 2019, 52, 7920-7928.	4.8	24
64	The influence of surfactant coverage of the minidroplets on RAFT miniemulsion polymerization. Journal of Polymer Science Part A, 2006, 44, 2293-2306.	2.3	23
65	Kinetics and simulation of the imidization of poly(styrene-co-maleic anhydride) with amines. Journal of Applied Polymer Science, 2006, 100, 2744-2749.	2.6	23
66	Melt polycondensation of <scp>L</scp> â€lactic acid catalyzed by 1,3â€dialkylimidazolium ionic liquids. Polymer International, 2008, 57, 872-878.	3.1	23
67	Synthesis of ethylene/1â€octene copolymers with controlled block structures by semibatch living copolymerization. AICHE Journal, 2013, 59, 4686-4695.	3.6	23
68	Well-controlled and stable emulsion ATRP of MMA with low surfactant concentration using surfactant–ligand design as the copper capture agent. Polymer Chemistry, 2015, 6, 2837-2843.	3.9	22
69	Cleavable polybutadiene rubber: A versatile precursor to hydroxyl-terminated or multi-hydroxyl polybutadiene and polyethylene. Polymer, 2016, 107, 306-315.	3.8	22
70	Synthesis and CO ₂ Capture Behavior of Porous Cross-Linked Polymers Containing Pendant Triazole Groups. Industrial & Engineering Chemistry Research, 2017, 56, 10155-10163.	3.7	22
71	Asymmetrical Exchange of Monomers for Constructing Hollow Nanoparticles and Antifragile Monoliths. Matter, 2021, 4, 618-634.	10.0	22
72	Variations of the glass-transition temperature in the imidization of poly(styrene-co-maleic anhydride). Journal of Applied Polymer Science, 2007, 104, 2418-2422.	2.6	21

#	Article	IF	CITATIONS
73	Kinetics and Modeling of Melt Polycondensation for Synthesis of Poly[(butylene) Tj ETQq1 1 0.784314 rgBT Engineering, 2010, 4, 621-632.	Overlock 10 Tf 1.5	50 747 Td 21
74	Programming Hydrogen Production via Controllable Emulsification/Demulsification in a Switchable Oil–Water System. ACS Sustainable Chemistry and Engineering, 2019, 7, 7768-7776.	6.7	21
75	Polypropylene and Ethyleneâ^'Propylene Copolymer Reactor Alloys Prepared by Metallocene/Zieglerâ^'Natta Hybrid Catalyst. Industrial & Engineering Chemistry Research, 2009, 48, 8349-8355.	3.7	20
76	Branching in RAFT Miniemulsion Copolymerization of Styrene/Triethylene Glycol Dimethacrylate and Control of Branching Density Distribution. Macromolecular Reaction Engineering, 2015, 9, 90-99.	1.5	20
77	Tailoring Polymer Molecular Weight Distribution and Multimodality in RAFT Polymerization Using Tube Reactor with Recycle. Macromolecular Reaction Engineering, 2017, 11, 1700023.	1.5	20
78	Design and Synthesis of Mechanoâ€Responsive Colorâ€Changing Thermoplastic Elastomer Based on Poly(<i>nâ€</i> Butyl Acrylate)–Spiropyranâ€Polystyrene Combâ€Structured Graft Copolymers. Macromolecular Materials and Engineering, 2018, 303, 1800154.	3.6	20
79	Sulfonated biodegradable PBAT copolyesters with improved gas barrier properties and excellent water dispersibility: From synthesis to structure-property. Polymer Degradation and Stability, 2020, 182, 109391.	5.8	20
80	Superior Gas Barrier Properties of Biodegradable PBST vs. PBAT Copolyesters: A Comparative Study. Polymers, 2021, 13, 3449.	4.5	20
81	Potentially Biodegradable "Short-Long―Type Diol-Diacid Polyesters with Superior Crystallizability, Tensile Modulus, and Water Vapor Barrier. ACS Sustainable Chemistry and Engineering, 2021, 9, 17362-17370.	6.7	20
82	Synthesis and Characterization of Highly Luminescent Copolymers of Methyl Methacrylate and Euâ€Complexed 5â€Acryloxyethoxymethylâ€8â€hydroxyquinoline. Macromolecular Chemistry and Physics, 2010, 211, 1733-1740.	2.2	19
83	Synthesis of polyethylene and polystyrene miktoarm star copolymers using an "in–out―strategy. Polymer Chemistry, 2014, 5, 5443-5452.	3.9	19
84	A Comprehensive Review on Controlled Synthesis of Long-Chain-Branched Polyolefins: Part 2, Multiple Catalyst Systems and Prepolymer Modification. Macromolecular Reaction Engineering, 2016, 10, 180-200.	1.5	19
85	Long chain branched poly(butylene succinateâ€coâ€terephthalate) copolyesters using pentaerythritol as branching agent: Synthesis, thermoâ€mechanical, and rheological properties. Journal of Applied Polymer Science, 2017, 134, .	2.6	19
86	Biobased flexible aromatic polyester poly(1,5-pentylene terephthalate) (PPeT): Revisiting melt crystallization behaviors and thermo-mechanical properties. European Polymer Journal, 2019, 110, 168-175.	5.4	19
87	Design and Synthesis of Poly(butyl acrylate) Networks through RAFT Polymerization with Crosslinking for Controlledâ€Release Applications. Macromolecular Materials and Engineering, 2013, 298, 391-399.	3.6	18
88	Preparation of CO ₂ -switchable graphene dispersions and their polystyrene nanocomposite latexes by direct exfoliation of graphite using hyperbranched polyethylene surfactants. Polymer Chemistry, 2016, 7, 4881-4890.	3.9	18
89	Hyperbranched polyethylene-supported <scp> </scp> -proline: a highly selective and recyclable organocatalyst for asymmetric aldol reactions. Catalysis Science and Technology, 2015, 5, 3798-3805.	4.1	16
90	Ring-opening Copolymerization of ε-Caprolactone and δ-Valerolactone Catalyzed by a 2,6-Bis(amino)phenol Zinc Complex. Chinese Journal of Polymer Science (English Edition), 2020, 38, 240-247.	3.8	16

#	Article	IF	Citations
91	Semicontinuous thermal bulk copolymerization of styrene and maleic anhydride: Experiments and reactor model. Journal of Applied Polymer Science, 1998, 67, 1905-1912.	2.6	15
92	Preparation of ultrahigh molecular weight ethylene/1-octene block copolymers using ethylene pressure pulse feeding policies. Polymer Chemistry, 2015, 6, 3800-3806.	3.9	15
93	Continuous thermal bulk copolymerization of styrene and maleic anhydride. Journal of Applied Polymer Science, 1999, 73, 615-622.	2.6	14
94	Kinetics of methyl methacrylate andn-butyl acrylate copolymerization mediated by 2-cyanoprop-2-yl dithiobenzoate as a RAFT agent. Journal of Polymer Science Part A, 2007, 45, 3098-3111.	2.3	14
95	bis(2-dodecylsulfanyl-ethyl)amine- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathMt">altimg="si67.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>CrCl</mml:mi></mml:mrow><mml:mrow><mml:mn>3and <mml:math <="" altimg="si68.gif" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathMt"><td>nml:mn><!--</td--><td>/mml:mrow> <</td></td></mml:math></mml:mn></mml:mrow></mml:msub></mml:math>	nml:mn> </td <td>/mml:mrow> <</td>	/mml:mrow> <

#	Article	IF	CITATIONS
109	Influence of clay and predispersion method on the structure and properties of polystyrene (PS) lay nanocomposites. Polymer Engineering and Science, 2009, 49, 1937-1944.	3.1	10
110	High Temperature High Pressure Tandem Polymerization of Ethylene for Synthesis of Ethyleneâ€1â€Hexene Copolymers from Single Reactor with SNSâ€Cr and CGCâ€Ti Catalysts. Macromolecular Reaction Engineering, 2015, 9, 32-39.	1.5	10
111	Synthesis of ethylene/vinyl ester copolymers with pendent linear branches via ring-opening metathesis polymerization of fatty acid-derived cyclooctenes. Journal of Polymer Science Part A, 2017, 55, 2211-2220.	2.3	10
112	Effect of Monomer Structure on Crystallization and Glass Transition of Flexible Copolyesters. Journal of Polymers and the Environment, 2017, 25, 1051-1061.	5.0	10
113	Facile access to carboxylâ€terminated polybutadiene and polyethylene from <i>cis</i> à€polybutadiene rubber. Journal of Applied Polymer Science, 2019, 136, 46934.	2.6	10
114	Polyurethane acrylate microgel synthesized by emulsion polymerization using unsaturated self-emulsified polymer. Colloid and Polymer Science, 2006, 284, 1171-1178.	2.1	9
115	Biodegradable Polymers from 5-Hydroxylevulinic Acid: 1. Synthesis and Characterization of Poly(5-hydroxylevulinic acid). Journal of Polymers and the Environment, 2008, 16, 68-73.	5.0	9
116	Tandem Action of SNS–Cr and CGC–Ti in Preparation of Ethylene–1â€Hexene Copolymers from Ethylene Feedstock. Macromolecular Chemistry and Physics, 2014, 215, 1661-1667.	2.2	9
117	Assembly of coupled redox fuel cells using copper as electron acceptors to generate power and its in-situ retrieval. Scientific Reports, 2016, 6, 21059.	3.3	9
118	Synthesis of a novel type of octyltetramethyldisiloxane-containing olefinic macromonomer and its copolymerization with ethylene. Polymer, 2016, 83, 20-26.	3.8	9
119	First Successful Post-Synthetic Self-Assembly of Polyaniline with Poly(N-vinylpyrrolidone) into Aqueous Nanocolloids. Macromolecular Rapid Communications, 2006, 27, 854-858.	3.9	8
120	Graft Copolymerization of Styrene and Acrylonitrile in the Presence of Poly(propylene glycol): Kinetics and Modeling. Macromolecular Reaction Engineering, 2012, 6, 365-383.	1.5	8
121	Solvent effect on cis-1,4-specific polymerization of 1,3-butadiene with CoCl2(PRPh2)2–EASC catalytic systems. Catalysis Science and Technology, 2014, 4, 773.	4.1	8
122	Ethylene polymerization with novel phenoxy-imine catalysts bearing 4-vinylphenyl group. Chinese Journal of Polymer Science (English Edition), 2014, 32, 854-863.	3.8	8
123	Nickel(II) \hat{l} ±-diimine catalysts with carboxyl groups for ethylene oligomerization and polymerization. Chinese Journal of Polymer Science (English Edition), 2016, 34, 221-228.	3.8	8
124	<i>110th Anniversary:</i> Model-Guided Preparation of Copolymer Sequence Distributions through Programmed Semibatch RAFT Mini-Emulsion Styrene/Butyl Acrylate Copolymerization. Industrial & Engineering Chemistry Research, 2019, 58, 18997-19008.	3.7	7
125	Poly(1,5-pentylene-co-2,2,4,4-tetramethyl cyclobutylene terephthalate) copolyesters with high Tg and improved ductility and thermal stability. Polymer, 2021, 232, 124152.	3.8	7
126	Controllable Preparation of the Reversibly Cross-Linked Rubber Based on Imine Bonds Starting from Telechelic Liquid Rubber. Industrial & Engineering Chemistry Research, 2022, 61, 7654-7664.	3.7	7

#	Article	IF	CITATIONS
127	Syndiospecific styrene polymerization with CpTiCl3/MAO: Effects of the order of reactant addition on polymerization and polymer properties. Journal of Applied Polymer Science, 2004, 94, 1449-1455.	2.6	6
128	Model development for semicontinuous production of ethylene and norbornene copolymers having uniform composition. AICHE Journal, 2009, 55, 663-674.	3.6	6
129	Synthesis and characterization of advance PA6â€≺i>bà€PDMS multiblock copolymers. Journal of Applied Polymer Science, 2014, 131, .	2.6	6
130	Modeling and Experimentation of RAFT Solution Copolymerization of Styrene and Butyl Acrylate, Effect of Chain Transfer Reactions on Polymer Molecular Weight Distribution. Macromolecular Reaction Engineering, 2017, 11, 1700029.	1.5	6
131	High Molecularâ€Weight Cyclic Polyesters from Solventâ€Free Ringâ€Opening Polymerization of Lactones with a Pyridylâ€Urea/MTBD. Macromolecular Chemistry and Physics, 2020, 221, 2000075.	2.2	6
132	Design of Well-Defined Polyethylene-g-poly-methyltrifluorosiloxane Graft Copolymers via Direct Copolymerization of Ethylene with Polyfluorosiloxane Macromonomers. Industrial & Engineering Chemistry Research, 2020, 59, 4557-4567.	3.7	6
133	Ringâ€Opening Polymerization of Propylene Oxide by Double Metal Complex in Microâ€Reactor. Macromolecular Reaction Engineering, 2020, 14, 1900048.	1.5	6
134	Influence of chain microstructure on ethylene–norbornene copolymer film properties. Journal of Applied Polymer Science, 2011, 121, 707-710.	2.6	5
135	Synthesis and Characterization of PE-b-POEGMA Copolymers Prepared by Linear/Hyperbranched Telechelic Polyethylene-Initiated ATRP of Oligo(ethylene glycol) Methacrylates. ACS Symposium Series, 2012, , 39-64.	0.5	5
136	Synthesis and evaluation of two new Flâ€Ti catalysts for living polymerization of ethylene. Journal of Applied Polymer Science, 2013, 129, 1971-1977.	2.6	5
137	Evaluation of Octyltetramethyldisiloxane-Containing Ethylene Copolymers as Composite Lubricant for High-Density Polyethylene. Macromolecular Materials and Engineering, 2016, 301, 1494-1502.	3.6	5
138	Nucleating agentâ€containing P(LLAâ€mbâ€BSA) multiâ€block copolymers with balanced mechanical properties. Journal of Applied Polymer Science, 2017, 134, .	2.6	5
139	Structuring Metal–Organic Framework Materials into Hierarchically Porous Composites through Oneâ€Pot Fabrication Strategy. Chemistry - A European Journal, 2020, 26, 3358-3363.	3.3	5
140	Fast and controlled ring-opening polymerization of \hat{l} -valerolactone catalyzed by benzoheterocyclic urea/MTBD catalysts. Catalysis Science and Technology, 2020, 10, 7555-7565.	4.1	5
141	Fabrication of Metal–Organic Framework/Polymer Composites via a One-Pot Solvent Crystal Template Strategy. ACS Applied Polymer Materials, 2021, 3, 2038-2044.	4.4	5
142	Synthesis and properties of poly(ethyleneâ€coâ€diethylene glycol 2,5â€furandicarboxylate) copolymers. Journal of Applied Polymer Science, 2022, 139, 51921.	2.6	5
143	Emulsion polymerization of methyl methacrylate in concentration of emulsifiers below their CMCs— polymerization rate, particle size, and particle-size distribution. Journal of Applied Polymer Science, 1995, 55, 1209-1215.	2.6	4
144	Synthesis, Characterisation and Photoluminescent Properties of Quinoline Derivatives Containing both a Biphenyl Group and an $\hat{l}\pm,\hat{l}^2$ -Diarylacrylonitrile Unit. Journal of Chemical Research, 2011, 35, 574-578.	1.3	4

#	Article	IF	CITATIONS
145	UHMWPE with shortâ€chain branches synthesized by alkenyl substituted phenoxy–imine catalysts in ethylene polymerization. Journal of Polymer Science Part A, 2016, 54, 3808-3818.	2.3	4
146	Molecular Weight Distribution in Ringâ€Opening Polymerization of Propylene Oxide Catalyzed by Double Metal Complex: A Model Simulation. Macromolecular Theory and Simulations, 2021, 30, 2000101.	1.4	4
147	Preparation of primary amine-terminated polybutadiene from cis-polybutadiene. European Polymer Journal, 2021, 152, 110484.	5.4	4
148	Studies on Alternating Copolymerization of Ethylene and Carbon Monoxide Using Nickelâ€Based Catalyst: Cocatalyst and the Polarity of Solvent. Macromolecular Reaction Engineering, 0, , 2100047.	1.5	4
149	Mechanism and kinetics of emulsion copolymerization of vinylidene chloride—Critical conversion at the end of interval 2 and rate of polymerization. Polymer International, 1993, 30, 441-444.	3.1	3
150	Synthesis and characterization of biodegradable crosslinked polymers from 5â€hydroxylevulinic acid and α,ï‰â€diols. Journal of Applied Polymer Science, 2010, 117, 3315-3321.	2.6	3
151	Progress of Polymer Reaction Engineering Research in China. Macromolecular Reaction Engineering, 2015, 9, 385-395.	1.5	3
152	Rapid collection and re-dispersion of MOF particles by a simple and versatile method using a thermo-responsive polymer. RSC Advances, 2016, 6, 63398-63402.	3.6	3
153	Tailoring Uniform Copolymer Composition Distribution via Policy II RAFT Solution Copolymerization of Styrene and Butyl Acrylate. Macromolecular Reaction Engineering, 2018, 12, 1800014.	1.5	3
154	Efficient Synthesis of Novel Polyethylene Graft Copolymers Containing Polyfluorosiloxane Side Chains. Industrial & Engineering Chemistry Research, 2019, 58, 18468-18473.	3.7	3
155	Telechelic Carboxylâ€Terminated Polynorbornenes and Copolymâ€ers via Chainâ€Transfer Ringâ€Opening Metathesis Polymerization. ChemistrySelect, 2020, 5, 8512-8517.	1.5	3
156	Gradient copolymers of εâ€caprolactone and δâ€valerolactone via solventâ€free ringâ€opening copolymerization with a pyridylâ€urea/ MTBD system. Journal of Polymer Science, 2020, 58, 2108-2115.	3.8	3
157	Supramolecular thermoplastic elastomers via selfâ€complementary quadruple hydrogen bonding between polybutadieneâ€based triblock copolymers. Journal of Applied Polymer Science, 2021, 138, 50085.	2.6	3
158	Kinetics and Modeling of Vinyl Acetate Graft Polymerization from Poly(ethylene glycol). Macromolecular Reaction Engineering, 2008, 2, 321-333.	1.5	2
159	Kinetic analysis of the imidization of poly(styreneâ€ <i>co</i> â€maleic anhydride) with aniline in the melt. Journal of Applied Polymer Science, 2010, 116, 2951-2957.	2.6	2
160	The effect of ligand molecular weight on copper salt catalyzed oxidative coupling polymerization of 2,6â€dimethylphenol. Journal of Applied Polymer Science, 2010, 117, 3473-3481.	2.6	2
161	Graft Copolymerization of Styrene and Acrylonitrile in the Presence of Poly(propylene glycol): Modeling and Simulation of Semiâ€Batch and Continuous Processes. Macromolecular Reaction Engineering, 2012, 6, 384-394.	1.5	2
162	Engineering Ethylene/1-Hexene Copolymers from Ethylene Stock with a Model-Guided Catalyst Feeding Policy. Macromolecules, 2022, 55, 462-471.	4.8	2

Bo-Geng Li

#	Article	IF	CITATIONS
163	Novel polyethyleneâ€∢i>bà€polyurethaneâ€∢i>bâ€polyethylene triblock copolymers: Facile synthesis and application. Journal of Applied Polymer Science, 2016, 133, .	2.6	1
164	Realâ€Time Detection of Atmosphere Composition in Threeâ€Component Gasâ€Phase Copolymerization of Olefins. Macromolecular Reaction Engineering, 2018, 12, 1800042.	1.5	1
165	Colorless Transparent Cyclobutanediol-Based Copolyesters with Excellent Polymerization Robustness, Thermal Stability, and High Performance. ACS Applied Polymer Materials, 2022, 4, 2006-2016.	4.4	1
166	Stability study of inverse suspension copolymerization of 1,1,3,3â€ŧetramethylguandium acrylate and <i>N,N′</i> àêmethylenebisacrylamide. Journal of Applied Polymer Science, 2010, 118, 1450-1454.	2.6	0
167	Synthesis of Novel Phenoxyimine Ligands Containing a 2,6-Difluoro-4-Styrylaniline. Journal of Chemical Research, 2011, 35, 151-153.	1.3	0
168	Graft Copolymerization of Styrene and Acrylonitrile in the Presence of Poly(propylene glycol): Particle Growth. Macromolecular Reaction Engineering, 2012, 6, 395-405.	1.5	0
169	Macromol. Rapid Commun. 3/2015. Macromolecular Rapid Communications, 2015, 36, 340-340.	3.9	0