List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7741197/publications.pdf Version: 2024-02-01

IAN RECK

#	Article	IF	CITATIONS
1	Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecological Informatics, 2014, 19, 10-15.	2.3	442
2	Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology and Evolution, 2019, 3, 539-551.	3.4	283
3	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	2.1	231
4	Is there any empirical support for biodiversity offset policy?. Ecological Applications, 2014, 24, 617-632.	1.8	213
5	Comment on "High-resolution global maps of 21st-century forest cover change― Science, 2014, 344, 981-981.	6.0	202
6	What's on the horizon for macroecology?. Ecography, 2012, 35, 673-683.	2.1	166
7	Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLoS Biology, 2018, 16, e2006841.	2.6	165
8	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	1.5	139
9	From forest to farmland: diversity of geometrid moths along two habitat gradients on Borneo. Journal of Tropical Ecology, 2002, 18, 33-51.	0.5	137
10	Undersampling and the measurement of beta diversity . Methods in Ecology and Evolution, 2013, 4, 370-382.	2.2	133
11	Online solutions and the â€~ <scp>W</scp> allacean shortfall': what does <scp>GBIF</scp> contribute to our knowledge of species' ranges?. Diversity and Distributions, 2013, 19, 1043-1050.	1.9	116
12	Comparing measures of species diversity from incomplete inventories: an update. Methods in Ecology and Evolution, 2010, 1, 38-44.	2.2	111
13	Superstition and belief as inevitable by-products of an adaptive learning strategy. Human Nature, 2007, 18, 35-46.	0.8	95
14	Mud-puddling behavior in tropical butterflies: in search of proteins or minerals?. Oecologia, 1999, 119, 140-148.	0.9	93
15	Mapping the biodiversity of tropical insects: species richness and inventory completeness of <scp>A</scp> frican sphingid moths. Global Ecology and Biogeography, 2013, 22, 586-595.	2.7	83
16	Elevational species richness gradients in a hyperdiverse insect taxon: a global metaâ€study on geometrid moths. Global Ecology and Biogeography, 2017, 26, 412-424.	2.7	83
17	Feasibility of light-trapping in community research on moths: attraction radius of light, completeness of samples, nightly flight times and seasonality of Southeast-Asian hawkmoths (Lepidoptera:) Tj ETQq1 1 0.7843	140r.gBT /(Dv e ndock 10
18	Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecology Letters, 2016, 19, 1009-1022.	3.0	75

#	Article	IF	CITATIONS
19	Beta-diversity of geometrid moths from northern Borneo: effects of habitat, time and space. Journal of Animal Ecology, 2007, 76, 230-237.	1.3	64
20	Explaining the elevational diversity pattern of geometrid moths from Borneo: a test of five hypotheses. Journal of Biogeography, 2008, 35, 1452-1464.	1.4	54
21	Correlates of range size and dispersal ability: a comparative analysis of sphingid moths from the Indo-Australian tropics. Global Ecology and Biogeography, 2007, 16, 341-349.	2.7	52
22	Predicting climate change effects on agriculture from ecological niche modeling: who profits, who loses?. Climatic Change, 2013, 116, 177-189.	1.7	50
23	Differential effects of environmental heterogeneity on global mammal species richness. Global Ecology and Biogeography, 2015, 24, 1072-1083.	2.7	48
24	Wallace's line revisited: has vicariance or dispersal shaped the distribution of Malesian hawkmoths (Lepidoptera: Sphingidae)?. Biological Journal of the Linnean Society, 2006, 89, 455-468.	0.7	45
25	Effects of Habitat Disturbance can be Subtle Yet Significant: Biodiversity of Hawkmoth-Assemblages (Lepidoptera: Sphingidae) in Southeast-Asia. Biodiversity and Conservation, 2006, 15, 465-486.	1.2	45
26	Estimating regional species richness of tropical insects from museum data: a comparison of a geography-based and sample-based methods. Journal of Applied Ecology, 2007, 44, 672-681.	1.9	35
27	Links between the Environment, Abundance and Diversity of Andean Moths. Biotropica, 2011, 43, 208-217.	0.8	34
28	Putting insects on the map: nearâ€global variation in sphingid moth richness along spatial and environmental gradients. Ecography, 2017, 40, 698-708.	2.1	33
29	Small mammal species richness is directly linked to regional productivity, but decoupled from food resources, abundance, or habitat complexity. Journal of Biogeography, 2018, 45, 2533-2545.	1.4	33
30	Adult life spans of butterflies (Lepidoptera: Papilionoidea + Hesperioidea): broadscale contingencies with adult and larval traits in multi-species comparisons. Biological Journal of the Linnean Society, 0, 96, 166-184.	0.7	32
31	Is the Spatial Distribution of Mankind's Most Basic Economic Traits Determined by Climate and Soil Alone?. PLoS ONE, 2010, 5, e10416.	1.1	32
32	Effects of experimentally planting non-crop flowers into cabbage fields on the abundance and diversity of predators. Biodiversity and Conservation, 2013, 22, 1049-1061.	1.2	31
33	The importance of amino acids in the adult diet of male tropical rainforest butterflies. Oecologia, 2007, 151, 741-747.	0.9	30
34	Seasonality in the altitude–diversity pattern of Alpine moths. Basic and Applied Ecology, 2010, 11, 714-722.	1.2	30
35	Incomplete species lists derived from global and regional specimenâ€record databases affect macroecological analyses: A case study on the vascular plants of China. Journal of Biogeography, 2018, 45, 2718-2729.	1.4	29
36	Species diversity of bats along an altitudinal gradient on Mount Mulanje, southern Malawi. Journal of Tropical Ecology, 2012, 28, 243-253.	0.5	26

#	Article	lF	CITATIONS
37	Forests as promoters of terrestrial life-history strategies in East African amphibians. Biology Letters, 2013, 9, 20121146.	1.0	26
38	Diversity Partitioning Confirms the Importance of Beta Components in Tropical Rainforest Lepidoptera. American Naturalist, 2012, 180, E64-E74.	1.0	25
39	Drivers of moth species richness on tropical altitudinal gradients: a crossâ€regional comparison. Global Ecology and Biogeography, 2009, 18, 361-371.	2.7	24
40	Species turnover in vertebrate communities along elevational gradients is idiosyncratic and unrelated to species richness. Global Ecology and Biogeography, 2016, 25, 299-310.	2.7	23
41	Determinants of regional species richness: an empirical analysis of the number of hawkmoth species (Lepidoptera: Sphingidae) on the Malesian archipelago. Journal of Biogeography, 2006, 33, 694-706.	1.4	20
42	Revisiting the indicator problem: can three epigean arthropod taxa inform about each other's biodiversity?. Diversity and Distributions, 2013, 19, 688-699.	1.9	20
43	Patterns or mechanisms? Bergmann's and Rapoport's rule in moths along an elevational gradient. Community Ecology, 2016, 17, 137-148.	0.5	20
44	Biodiversity Function and Resilience in Tropical Agroforestry Systems Including Shifting Cultivation. Current Forestry Reports, 2016, 2, 62-80.	3.4	19
45	How has the environment shaped geographical patterns of insect body sizes? A test of hypotheses using sphingid moths. Journal of Biogeography, 2019, 46, 1687-1698.	1.4	19
46	Measuring range sizes of South-East Asian hawkmoths (Lepidoptera: Sphingidae): effects of scale, resolution and phylogeny. Global Ecology and Biogeography, 2006, 15, 339-348.	2.7	14
47	Measuring population densities in a heterogeneous world. Global Ecology and Biogeography, 2008, 17, 566-568.	2.7	14
48	Predicting geometrid moth diversity in the Heart of Borneo. Insect Conservation and Diversity, 2011, 4, 173-183.	1.4	14
49	Just bird food? $\hat{a} \in $ On the value of invertebrate macroecology. Frontiers of Biogeography, 2020, 12, .	0.8	12
50	Phylogenetic and ecological correlates with male adult life span of rainforest butterflies. Evolutionary Ecology, 2008, 22, 507-517.	0.5	10
51	Projecting the potential invasion of the Pink Spotted Hawkmoth (<i>Agrius cingulata</i>) across Africa. International Journal of Pest Management, 2011, 57, 153-159.	0.9	10
52	How climatic variability is linked to the spatial distribution of range sizes: seasonality versus climate change velocity in sphingid moths. Journal of Biogeography, 2017, 44, 2441-2450.	1.4	8
53	Field sampling is biased against small-ranged species of high conservation value: a case study on the sphingid moths of East Africa. Biodiversity and Conservation, 2018, 27, 3533-3544.	1.2	8
54	The jury is still out on biodiversity offsets: reply to Quétier et al , 2015, 25, 1741-1746.		7

#	Article	IF	CITATIONS
55	Elevational richness patterns of sphingid moths support area effects over climatic drivers in a nearâ€global analysis. Global Ecology and Biogeography, 2019, 28, 917-927.	2.7	6
56	Functional and taxonomic responses of tropical moth communities to deforestation. Insect Conservation and Diversity, 2022, 15, 236-247.	1.4	6
57	Effects of habitat disturbance can be subtle yet significant: biodiversity of hawkmoth-assemblages (Lepidoptera: Sphingidae) in Southeast-Asia. , 2006, , 451-472.		4
58	Effects of habitat age and disturbance intensity on the biodiversity of three trophic levels in Central Kenya. African Journal of Ecology, 2016, 54, 225-234.	0.4	3
59	Is the ecological belt zonation of the Swiss Alps relevant for moth diversity and turnover?. Acta Oecologica, 2017, 80, 1-7.	0.5	2