
Andrew Dimitrijevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7741133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury. Molecular Therapy, 2022, 30, 519-533.	3.7	13
2	Cortical alpha oscillations in cochlear implant users reflect subjective listening effort during speech-in-noise perception. PLoS ONE, 2021, 16, e0254162.	1.1	23
3	Neural correlates of visual stimulus encoding and verbal working memory differ between cochlear implant users and normalâ€hearing controls. European Journal of Neuroscience, 2021, 54, 5016-5037.	1.2	11
4	Acoustic Change Responses to Amplitude Modulation in Cochlear Implant Users: Relationships to Speech Perception. Frontiers in Neuroscience, 2020, 14, 124.	1.4	20
5	Poor early cortical differentiation of speech predicts perceptual difficulties of severely hearing-impaired listeners in multi-talker environments. Scientific Reports, 2020, 10, 6141.	1.6	21
6	Neural indices of listening effort in noisy environments. Scientific Reports, 2019, 9, 11278.	1.6	71
7	Cortical Alpha Oscillations Predict Speech Intelligibility. Frontiers in Human Neuroscience, 2017, 11, 88.	1.0	68
8	Human Envelope Following Responses to Amplitude Modulation: Effects of Aging and Modulation Depth. Ear and Hearing, 2016, 37, e322-e335.	1.0	40
9	Auditory cortical activity to different voice onset times in cochlear implant users. Clinical Neurophysiology, 2016, 127, 1603-1617.	0.7	23
10	Characterizing Information Flux Within the Distributed Pediatric Expressive Language Network: A Core Region Mapped Through fMRI-Constrained MEG Effective Connectivity Analyses. Brain Connectivity, 2016, 6, 76-83.	0.8	22
11	Acoustic change responses to amplitude modulation: a method to quantify cortical temporal processing and hemispheric asymmetry. Frontiers in Neuroscience, 2015, 9, 38.	1.4	24
12	Right is not always wrong: DTI and fMRI evidence for the reliance of reading comprehension on language-comprehension networks in the right hemisphere. Brain Imaging and Behavior, 2015, 9, 19-31.	1.1	34
13	Factors Determining Success of Awake and Asleep Magnetic Resonance Imaging Scans in Nonsedated Children. Neuropediatrics, 2014, 45, 370-377.	0.3	54
14	Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. NeuroImage, 2014, 87, 356-362.	2.1	182
15	Auditory cortical activity in normal hearing subjects to consonant vowels presented in quiet and in noise. Clinical Neurophysiology, 2013, 124, 1204-1215.	0.7	29
16	Loudness adaptation accompanying ribbon synapse and auditory nerve disorders. Brain, 2013, 136, 1626-1638.	3.7	47
17	Towards a Closed-Loop Cochlear Implant System: Application of Embedded Monitoring of Peripheral and Central Neural Activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 443-454.	2.7	38
18	Auditory cortical N100 in pre- and post-synaptic auditory neuropathy to frequency or intensity changes of continuous tones. Clinical Neurophysiology, 2011, 122, 594-604.	0.7	30

ANDREW DIMITRIJEVIC

#	Article	IF	CITATIONS
19	Tinnitus suppression by low-rate electric stimulation and its electrophysiological mechanisms. Hearing Research, 2011, 277, 61-66.	0.9	62
20	A comparison of auditory evoked potentials to acoustic beats and to binaural beats. Hearing Research, 2010, 262, 34-44.	0.9	64
21	Auditory-evoked potentials to frequency increase and decrease of high- and low-frequency tones. Clinical Neurophysiology, 2009, 120, 360-373.	0.7	35
22	Intensity changes in a continuous tone: Auditory cortical potentials comparison with frequency changes. Clinical Neurophysiology, 2009, 120, 374-383.	0.7	34
23	N100 cortical potentials accompanying disrupted auditory nerve activity in auditory neuropathy (AN): Effects of signal intensity and continuous noise. Clinical Neurophysiology, 2009, 120, 1352-1363.	0.7	47
24	Cortical evoked potentials to an auditory illusion: Binaural beats. Clinical Neurophysiology, 2009, 120, 1514-1524.	0.7	44
25	Frequency changes in a continuous tone: Auditory cortical potentials. Clinical Neurophysiology, 2008, 119, 2111-2124.	0.7	69
26	Human electrophysiological examination of buildup of the precedence effect. NeuroReport, 2006, 17, 1133-1137.	0.6	10
27	Estimating Audiometric Thresholds Using Auditory Steady-State Responses. Journal of the American Academy of Audiology, 2005, 16, 140-156.	0.4	152
28	Auditory Steady-State Responses and Word Recognition Scores in Normal-Hearing and Hearing-Impaired Adults. Ear and Hearing, 2004, 25, 68-84.	1.0	71
29	Human auditory steady-state responses: Respuestas auditivas de estado estable en humanos. International Journal of Audiology, 2003, 42, 177-219.	0.9	730
30	Efficient Stimuli for Evoking Auditory Steady-State Responses. Ear and Hearing, 2003, 24, 406-423.	1.0	41
31	Auditory Steady-State Responses to Exponential Modulation Envelopes. Ear and Hearing, 2002, 23, 106-117.	1.0	80
32	Multiple Auditory Steady-State Responses. Annals of Otology, Rhinology and Laryngology, 2002, 111, 16-21.	0.6	44
33	Estimating the Audiogram Using Multiple Auditory Steady-State Responses. Journal of the American Academy of Audiology, 2002, 13, 205-224.	0.4	177
34	Advantages and Caveats When Recording Steady-State Responses to Multiple Simultaneous Stimuli. Journal of the American Academy of Audiology, 2002, 13, 246-259.	0.4	82
35	Estimating the audiogram using multiple auditory steady-state responses. Journal of the American Academy of Audiology, 2002, 13, 205-24.	0.4	92
36	Advantages and caveats when recording steady-state responses to multiple simultaneous stimuli. Journal of the American Academy of Audiology, 2002, 13, 246-59.	0.4	41

ANDREW DIMITRIJEVIC

#	Article	IF	CITATIONS
37	Weighted averaging of steady-state responses. Clinical Neurophysiology, 2001, 112, 555-562.	0.7	95
38	The use of phase in the detection of auditory steady-state responses. Clinical Neurophysiology, 2001, 112, 1698-1711.	0.7	75
39	Human Auditory Steady-State Responses to Tones Independently Modulated in Both Frequency and Amplitude. Ear and Hearing, 2001, 22, 100-111.	1.0	59
40	Multiple Auditory Steady-State Responses to AM and FM Stimuli. Audiology and Neuro-Otology, 2001, 6, 12-27.	0.6	84