Natalia Fridman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7741077/publications.pdf

Version: 2024-02-01

45 785
papers citations

16 25
h-index g-index

46 46 all docs docs citations

46 times ranked 641 citing authors

#	Article	IF	CITATIONS
1	Hydrogen Evolution Catalyzed by Corrole-Chelated Nickel Complexes, Characterized in all Catalysis-Relevant Oxidation States. ACS Catalysis, 2022, 12, 4310-4317.	11.2	29
2	Orthogonal Design of Feâ^'N ₄ Active Sites and Hierarchical Porosity in Hydrazine Oxidation Electrocatalysts. ChemElectroChem, 2022, 9, .	3.4	4
3	Doubly Stimulated Corrole for Organelle-Selective Antitumor Cytotoxicity. Journal of Medicinal Chemistry, 2022, 65, 6100-6115.	6.4	10
4	\hat{l}^2 -Bis-CF ₃ -substituted phosphorus corroles, theory and experiments. Inorganic Chemistry Frontiers, 2022, 9, 3319-3329.	6.0	3
5	A chromophore-supported structural and functional model of dinuclear copper enzymes, for facilitating mechanism of action studies. Chemical Science, 2021, 12, 12445-12450.	7.4	0
6	Trifluoromethyl Hydrolysis En Route to Corroles with Increased Druglikeness. Angewandte Chemie - International Edition, 2021, 60, 12829-12834.	13.8	16
7	Dimeric Corrole Analogs of Chlorophyll Special Pairs. Journal of the American Chemical Society, 2021, 143, 9450-9460.	13.7	8
8	Trifluoromethyl Hydrolysis En Route to Corroles with Increased Druglikeness. Angewandte Chemie, 2021, 133, 12939-12944.	2.0	6
9	Custom Tokenization Dictionary, CUSTODI: A General, Fast, and Reversible Data-Driven Representation and Regressor. Journal of Chemical Information and Modeling, 2021, 61, 3285-3291.	5.4	2
10	Hydrogen evolution catalysis by terminal molybdenum-oxo complexes. IScience, 2021, 24, 102924.	4.1	14
11	Corroles: The Hitherto Elusive Parent Macrocycle and its Metal Complexes. Angewandte Chemie - International Edition, 2021, 60, 25097-25103.	13.8	12
12	Synthesis, structural characterization and binding ability of A2B cobalt(III) corroles with pyridine. Inorganica Chimica Acta, 2021, 527, 120580.	2.4	4
13	Penta -hexa coordination behaviour of ABA-P(V) corrole. Journal of Molecular Structure, 2021, 1243, 130857.	3.6	7
14	Minding our P-block and Q-bands: paving inroads into main group corrole research to help instil broader potential. Chemical Communications, 2021, 57, 4605-4641.	4.1	13
15	Controllable and stable organometallic redox mediators for lithium oxygen batteries. Materials Horizons, 2020, 7, 214-222.	12.2	15
16	Rhenium(<scp>i</scp>) sapphyrins: remarkable difference between the C ₆ F ₅ and CF ₃ -substituted derivatives. Chemical Communications, 2020, 56, 980-983.	4.1	7
17	"Heteroâ€Multifunctionalization―of Gallium Corroles: Facile Synthesis, Phosphorescence, Redox Tuning, and Photooxidative Catalytic Improvement. ChemPlusChem, 2020, 85, 163-168.	2.8	9
18	Clean Ar-Me conversion to Ar-aldehyde with the aid of carefully designed metallocor role photocatalysts. Photochemical and Photobiological Sciences, 2020, 19, 996-1000.	2.9	12

#	Article	IF	CITATIONS
19	Elucidation of Factors That Govern the $2e < \sup \hat{a} \in (sup /2H < \sup) + (sup /2H < \sup) $ vs $4e < \sup \hat{a} \in (sup /4H < \sup) + (sup /4H < \sup) $ Selectivity of Water Oxidation by a Cobalt Corrole. Journal of the American Chemical Society, 2020, 142, 21040-21049.	13.7	44
20	Palladium Complexes of Corroles and Sapphyrins. Chemistry - A European Journal, 2020, 26, 9481-9485.	3.3	15
21	Water Oxidation Catalysis by Mono- and Binuclear Iron Corroles. ACS Catalysis, 2020, 10, 3764-3772.	11.2	49
22	Axial/Peripheral Chloride/Fluoride-Substituted Boron Subphthalocyanines as Electron Acceptors. Inorganic Chemistry, 2020, 59, 2641-2645.	4.0	19
23	Copper Complexes of CF ₃ -Substituted Corroles for Affecting Redox Potentials and Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 2828-2836.	5.1	29
24	Selfâ€Assembly of Simple Corroles, via Hydrogen Bonding and Coordination. European Journal of Organic Chemistry, 2020, 2020, 3142-3146.	2.4	2
25	Enhanced Synthetic Access to Tris-CF ₃ -Substituted Corroles. Organic Letters, 2020, 22, 3119-3122.	4.6	15
26	Positive shift in corrole redox potentials leveraged by modest β-CF3-substitution helps achieve efficient photocatalytic Câ€"H bond functionalization by group 13 complexes. Dalton Transactions, 2019, 48, 12279-12286.	3.3	24
27	Tuning Chemical and Physical Properties of Phosphorus Corroles for Advanced Applications. Chemistry - A European Journal, 2019, 25, 11383-11388.	3.3	15
28	Superstructured metallocorroles for electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 11912-11915.	4.1	16
29	Phosphorus corrole complexes: from property tuning to applications in photocatalysis and triplet–triplet annihilation upconversion. Chemical Science, 2019, 10, 7091-7103.	7.4	48
30	Trifluoromethylation for affecting the structural, electronic and redox properties of cobalt corroles. Dalton Transactions, 2019, 48, 4798-4810.	3.3	28
31	Corroles and corrole/transferrin nanoconjugates as candidates for sonodynamic therapy. Chemical Communications, 2019, 55, 12789-12792.	4.1	23
32	Fluorinated boron subphthalocyanines: Lewis acid based templating chemistry facilitates random halide exchange, and fluoride <i>versus</i> chloride affects the basic photophysical properties and the solid-state arrangement. New Journal of Chemistry, 2019, 43, 16730-16737.	2.8	19
33	Reactive Intermediates Involved in Cobalt Corrole Catalyzed Water Oxidation (and Oxygen Reduction). Inorganic Chemistry, 2018, 57, 478-485.	4.0	44
34	Oneâ€Pot Synthesis of Contracted and Expanded Porphyrins with <i>meso</i> F ₃ Groups. Angewandte Chemie, 2018, 130, 1018-1022.	2.0	14
35	Oneâ€Pot Synthesis of Contracted and Expanded Porphyrins with <i>meso</i> F ₃ Groups. Angewandte Chemie - International Edition, 2018, 57, 1006-1010.	13.8	29
36	Rhodium Complexes of a New-Generation Sapphyrin: Unique Structures, Axial Chirality, and Catalysis. Chemistry - A European Journal, 2018, 24, 17163-17163.	3.3	0

3

#	Article	IF	Citations
37	Rhodium Complexes of a Newâ€Generation Sapphyrin: Unique Structures, Axial Chirality, and Catalysis. Chemistry - A European Journal, 2018, 24, 17255-17261.	3.3	13
38	Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin–Orbit Coupling and Density of States. Journal of Physical Chemistry A, 2018, 122, 7256-7266.	2.5	22
39	Introduction: Expanded, Contracted, and Isomeric Porphyrins. Chemical Reviews, 2017, 117, 2201-2202.	47.7	54
40	The Planar Cyclooctatetraene Bridge in Bis-Metallic Macrocycles: Isolating or Conjugating?. Inorganic Chemistry, 2017, 56, 2287-2296.	4.0	13
41	Effect of Selective CF ₃ Substitution on the Physical and Chemical Properties of Gold Corroles. Angewandte Chemie - International Edition, 2017, 56, 9837-9841.	13.8	32
42	Effect of Selective CF 3 Substitution on the Physical and Chemical Properties of Gold Corroles. Angewandte Chemie, 2017, 129, 9969-9973.	2.0	7
43	Iodinated cobalt corroles. Journal of Porphyrins and Phthalocyanines, 2017, 21, 900-907.	0.8	8
44	One-Pot Conversion of Fluorophores to Phosphorophores. Organic Letters, 2016, 18, 5840-5843.	4.6	31
45	Corroles: The Hitherto Elusive Parent Macrocycle and its Metal Complexes. Angewandte Chemie, 0, , .	2.0	1