Maria Teresa AlarcÃ³n-Herrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7740443/publications.pdf

Version: 2024-02-01

840776 642732 26 986 11 23 citations g-index h-index papers 26 26 26 1139 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photocatalysis for arsenic removal from water: considerations for solar photocatalytic reactors. Environmental Science and Pollution Research, 2022, 29, 61594-61607.	5.3	7
2	Solar heterogeneous photocatalytic degradation of phenol on TiO2/quartz and TiO2/calcite: a statistical and kinetic approach on comparative efficiencies towards a TiO2/glass system. Environmental Science and Pollution Research, 2022, 29, 42319-42330.	5.3	6
3	Geogenic arsenic in groundwater: Challenges, gaps, and future directions. Current Opinion in Environmental Science and Health, 2022, 27, 100349.	4.1	18
4	Comparative Efficiencies for Phenol Degradation on Solar Heterogeneous Photocatalytic Reactors: Flat Plate and Compound Parabolic Collector. Catalysts, 2022, 12, 575.	3.5	3
5	Comparative assessment of water quality indicesâ€"a case study to evaluate water quality for drinking water supply and irrigation in Northern Mexico. Environmental Monitoring and Assessment, 2022, 194, .	2.7	2
6	Role of Nitrogen in Assessing the Sustainability of Irrigated Areas: Case Study of Northern Mexico. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	10
7	Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Science of the Total Environment, 2021, 780, 146274.	8.0	97
8	Ferrous Magnetic Nanoparticles for Arsenic Removal from Groundwater. Water (Switzerland), 2021, 13, 2511.	2.7	4
9	Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Science of the Total Environment, 2020, 698, 134168.	8.0	134
10	Variaci \tilde{A}^3 n espacio-temporal de ars \tilde{A} ©nico y fl \tilde{A}° or en el agua subterr \tilde{A} ;nea de la ciudad de Durango, M \tilde{A} ©xico. Tecnologia Y Ciencias Del Agua, 2020, 11 , .	0.3	5
11	An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Science of the Total Environment, 2018, 624, 1513-1522.	8.0	116
12	Simulation of arsenic retention in constructed wetlands. Environmental Science and Pollution Research, 2017, 24, 2394-2401.	5.3	0
13	Conductometric measurement of the changes in humic substances caused by ozone oxidation. Environmental Science and Pollution Research, 2016, 23, 12085-12094.	5.3	0
14	Arsenic uptake and distribution in <scp><i>C</i></scp> <i>ucumis melo</i> and <scp><i>C</i></scp> <i>i>trullus lanatus</i> plants. Environmental Progress and Sustainable Energy, 2016, 35, 750-757.	2.3	2
15	Removal of fluoride from well water by modified iron oxides in a column system. Desalination and Water Treatment, 2016, 57, 2125-2133.	1.0	9
16	Arsenic and Fluoride Variations in Groundwater of an Endorheic Basin Undergoing Land-Use Changes. Archives of Environmental Contamination and Toxicology, 2015, 68, 292-304.	4.1	26
17	Adsorption of Arsenite from Groundwater Using Titanium Dioxide. Clean - Soil, Air, Water, 2014, 42, 713-721.	1.1	11
18	Modelling of arsenic retention in constructed wetlands. Bioresource Technology, 2013, 147, 221-227.	9.6	8

#	Article	IF	CITATION
19	Fluoride and Arsenic in an Alluvial Aquifer System in Chihuahua, Mexico: Contaminant Levels, Potential Sources, and Co-occurrence. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	34
20	Modelling the non-biogenic steps of arsenic retention in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, 2013, 223, 657-664.	12.7	5
21	Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. Journal of Hazardous Materials, 2013, 262, 960-969.	12.4	206
22	Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands. Environmental Science and Pollution Research, 2012, 19, 763-771.	5. 3	24
23	Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. Science of the Total Environment, 2012, 429, 107-122.	8.0	61
24	Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere, 2011, 83, 211-225.	8.2	169
25	Mathematical Modelling for the Integrated Management of Water Resources in Hydrological Basins. Water Resources Management, 2009, 23, 721-730.	3.9	27
26	Performance of a Pilot Subsurface Flow Treatment Wetland System, Used for Arsenic Removal from Reverse Osmosis Concentrate, in the Municipality of Julimes, Chihuahua, Mexico. Ingenieria Y Universidad, 0, 24, .	0.5	2