
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7740378/publications.pdf Version: 2024-02-01

IANNE RINNE

#	Article	IF	CITATIONS
1	Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 2009, 43, 5193-5267.	1.9	609
2	A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 2014, 20, 2183-2197.	4.2	389
3	Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model. Atmospheric Chemistry and Physics, 2008, 8, 1329-1341.	1.9	249
4	Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 449-457.	0.8	224
5	Seasonal variation of mono- and sesquiterpene emission rates of Scots pine. Biogeosciences, 2006, 3, 93-101.	1.3	208
6	Flux and concentration footprint modelling: State of the art. Environmental Pollution, 2008, 152, 653-666.	3.7	199
7	Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependence on light and temperature. Atmospheric Environment, 2002, 36, 2421-2426.	1.9	192
8	The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula) and European aspen (Populus tremula). Atmospheric Environment, 1998, 32, 1825-1833.	1.9	190
9	Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry. Atmospheric Chemistry and Physics, 2002, 2, 279-291.	1.9	184
10	Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS – measurement, calibration, and volume mixing ratio calculation methods. Atmospheric Chemistry and Physics, 2008, 8, 6681-6698.	1.9	179
11	Growth rates of nucleation mode particles in HyytiĀkĀrduring 2003â``2009: variation with particle size, season, data analysis method and ambient conditions. Atmospheric Chemistry and Physics, 2011, 11, 12865-12886.	1.9	173
12	The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4594-4599.	3.3	171
13	Determination of <i>de novo</i> and pool emissions of terpenes from four common boreal/alpine trees by ¹³ CO ₂ labelling and PTRâ€MS analysis. Plant, Cell and Environment, 2010, 33, 781-792.	2.8	169
14	Variability in exchange of CO ₂ across 12 northern peatland and tundra sites. Global Change Biology, 2010, 16, 2436-2448.	4.2	144
15	A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 42.	0.8	138
16	Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 2010, 5, 034007.	2.2	137
17	Hydrocarbon fluxes above a Scots pine forest canopy: measurements and modeling. Atmospheric Chemistry and Physics, 2007, 7, 3361-3372.	1.9	131
18	OH Reactivity Measurements within a Boreal Forest: Evidence for Unknown Reactive Emissions. Environmental Science & Technology, 2010, 44, 6614-6620.	4.6	127

#	Article	IF	CITATIONS
19	Surface–atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 188.	0.8	125
20	CO ₂ exchange of a sedge fen in southern Finland—the impact of a drought period. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 826.	0.8	117
21	In situ measurements of volatile organic compounds in a boreal forest. Atmospheric Chemistry and Physics, 2012, 12, 11665-11678.	1.9	113
22	Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2012, 12, 8257-8270.	1.9	111
23	Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 838.	0.8	109
24	The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmospheric Chemistry and Physics, 2011, 11, 10599-10618.	1.9	108
25	Disjunct eddy covariance measurements of oxygenated volatile organic compounds fluxes from an alfalfa field before and after cutting. Journal of Geophysical Research, 2002, 107, ACH 6-1.	3.3	103
26	C ₂ -C ₁₀ hydrocarbon emissions from a boreal wetland and forest floor. Biogeosciences, 2006, 3, 167-174.	1.3	103
27	Canopy scale monoterpene emissions of Pinus sylvestris dominated forests. Atmospheric Environment, 2000, 34, 1099-1107.	1.9	98
28	Disjunct eddy covariance technique for trace gas flux measurements. Geophysical Research Letters, 2001, 28, 3139-3142.	1.5	93
29	Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 458-469.	0.8	92
30	Nitrous Oxide Emissions from a Municipal Landfill. Environmental Science & Technology, 2005, 39, 7790-7793.	4.6	89
31	Day-time concentrations of biogenic volatile organic compounds in a boreal forest canopy and their relation to environmental and biological factors. Atmospheric Chemistry and Physics, 2009, 9, 5447-5459.	1.9	83
32	Micrometeorological Measurements of Methane and Carbon Dioxide Fluxes at a Municipal Landfill. Environmental Science & Technology, 2007, 41, 2717-2722.	4.6	82
33	Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model. Atmospheric Chemistry and Physics, 2013, 13, 10243-10269.	1.9	82
34	Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in western Italy. Biogeosciences, 2009, 6, 1655-1670.	1.3	79
35	Temporal Variation of Ecosystem Scale Methane Emission From a Boreal Fen in Relation to Temperature, Water Table Position, and Carbon Dioxide Fluxes. Global Biogeochemical Cycles, 2018, 32, 1087-1106.	1.9	78
36	Environmental controls on the CO ₂ exchange in north European mires. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 812.	0.8	75

#	Article	IF	CITATIONS
37	The ambient concentrations of biogenic hydrocarbons at a northern European, boreal site. Atmospheric Environment, 2000, 34, 4971-4982.	1.9	73
38	Ozone deposition into a boreal forest over a decade of observations: evaluating deposition partitioning and driving variables. Atmospheric Chemistry and Physics, 2012, 12, 12165-12182.	1.9	72
39	Modelling atmospheric OH-reactivity in a boreal forest ecosystem. Atmospheric Chemistry and Physics, 2011, 11, 9709-9719.	1.9	69
40	Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth System Science Data, 2019, 11, 1263-1289.	3.7	69
41	Mass yields of secondary organic aerosols from the oxidation of α-pinene and real plant emissions. Atmospheric Chemistry and Physics, 2011, 11, 1367-1378.	1.9	68
42	Towards a comprehensive emission inventory of terpenoids from boreal ecosystems. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 526-534.	0.8	66
43	Standardisation of eddy-covariance flux measurements of methane and nitrous oxide. International Agrophysics, 2018, 32, 517-549.	0.7	66
44	New particle formation from the oxidation of direct emissions of pine seedlings. Atmospheric Chemistry and Physics, 2009, 9, 8121-8137.	1.9	64
45	Formation and growth of indoor air aerosol particles as a result of d-limonene oxidation. Atmospheric Environment, 2006, 40, 7882-7892.	1.9	63
46	Plantâ€mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytologist, 2005, 168, 93-98.	3.5	61
47	Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques. Biogeosciences, 2005, 2, 377-387.	1.3	57
48	Overview of the field measurement campaign in HyytiÃѬ́¤August 2001 in the framework of the EU project OSOA. Atmospheric Chemistry and Physics, 2004, 4, 657-678.	1.9	56
49	Modeling speciated terpenoid emissions from the European boreal forest. Atmospheric Environment, 2000, 34, 4983-4996.	1.9	55
50	Biogenic and biomass burning organic aerosol in a boreal forest at HyytiÃѬ́¤Finland, during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2013, 13, 12233-12256.	1.9	53
51	Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model. Atmospheric Chemistry and Physics, 2012, 12, 4843-4854.	1.9	52
52	Latent heat exchange in the boreal and arctic biomes. Global Change Biology, 2014, 20, 3439-3456.	4.2	52
53	Measurements of aerosol particle dry deposition velocity using the relaxed eddy accumulation technique. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 381-386.	0.8	49
54	Measurements of hydrocarbon emissions from a boreal fen using the REA technique. Biogeosciences, 2006, 3, 103-112.	1.3	45

#	Article	IF	CITATIONS
55	Lag time determination in DEC measurements with PTR-MS. Atmospheric Measurement Techniques, 2010, 3, 853-862.	1.2	45
56	Annual cycle of volatile organic compound exchange between a boreal pine forest and the atmosphere. Biogeosciences, 2015, 12, 5753-5770.	1.3	45
57	Determining the contribution of vertical advection to the net ecosystem exchange at HyytiĀkĀ¢orest, Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 900.	0.8	44
58	Evaluation of accuracy in measurements of VOC emissions with dynamic chamber system. Atmospheric Environment, 2012, 62, 344-351.	1.9	44
59	The Integrated Carbon Observation System in Europe. Bulletin of the American Meteorological Society, 2022, 103, E855-E872.	1.7	44
60	ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO ₂ , water, and energy fluxes on daily to annual scales. Geoscientific Model Development, 2018, 11, 497-519.	1.3	43
61	Volatile organic compound emissions from Siberian larch. Atmospheric Environment, 2007, 41, 5807-5812.	1.9	42
62	Can MODIS EVI monitor ecosystem productivity in the Amazon rainforest?. Geophysical Research Letters, 2014, 41, 7176-7183.	1.5	42
63	Measurements of hydrocarbon fluxes by a gradient method above a northern boreal forest. Agricultural and Forest Meteorology, 2000, 102, 25-37.	1.9	41
64	The current state of CO ₂ flux chamber studies in the Arctic tundra. Progress in Physical Geography, 2018, 42, 162-184.	1.4	41
65	Measuring methane emissions from a landfill using a cost-effective micrometeorological method. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	36
66	Mountain birch – potentially large source of sesquiterpenes into high latitude atmosphere. Biogeosciences, 2009, 6, 2709-2718.	1.3	36
67	Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest. Biogeosciences, 2011, 8, 2247-2255.	1.3	36
68	Anthropogenic and biogenic influence on VOC fluxes at an urban background site in Helsinki, Finland. Atmospheric Chemistry and Physics, 2016, 16, 7981-8007.	1.9	34
69	Effect of the 2018 European drought on methane and carbon dioxide exchange of northern mire ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190517.	1.8	34
70	Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature Communications, 2021, 12, 2266.	5.8	34
71	Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland. Quaternary Science Reviews, 2016, 142, 1-15.	1.4	32

#	Article	IF	CITATIONS
73	Is forest management a significant source of monoterpenes into the boreal atmosphere?. Biogeosciences, 2012, 9, 1291-1300.	1.3	31
74	Herbivore teeth predict climatic limits in Kenyan ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12751-12756.	3.3	31
75	Measurements of biogenic volatile organic compounds at a grazed savannah grassland agricultural landscape in South Africa. Atmospheric Chemistry and Physics, 2016, 16, 15665-15688.	1.9	30
76	Soil greenhouse gas emissions under different land-use types in savanna ecosystems of Kenya. Biogeosciences, 2020, 17, 2149-2167.	1.3	30
77	Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring. Atmospheric Chemistry and Physics, 2007, 7, 1869-1878.	1.9	29
78	Measurements of methane emission from a temperate wetland by the eddy covariance method. International Agrophysics, 2013, 27, 283-290.	0.7	28
79	Volatile organic compound fluxes in a subarctic peatland and lake. Atmospheric Chemistry and Physics, 2020, 20, 13399-13416.	1.9	28
80	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27
81	Carbon balance of a grazed savanna grassland ecosystem in South Africa. Biogeosciences, 2017, 14, 1039-1054.	1.3	26
82	Field comparison of disjunct and conventional eddy covariance techniques for trace gas flux measurements. Environmental Pollution, 2008, 152, 630-635.	3.7	25
83	A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux. Atmospheric Measurement Techniques, 2016, 9, 509-524.	1.2	24
84	Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak–hornbeam forest. Atmospheric Chemistry and Physics, 2016, 16, 7171-7194.	1.9	24
85	HIMMELI v1.0: Helsinki Model of MEthane buiLd-up and emission for peatlands. Geoscientific Model Development, 2017, 10, 4665-4691.	1.3	24
86	Importance of vegetation classes in modeling CH4 emissions from boreal and subarctic wetlands in Finland. Science of the Total Environment, 2016, 572, 1111-1122.	3.9	23
87	Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration. Biogeosciences, 2017, 14, 257-269.	1.3	22
88	Small spatial variability in methane emission measured from a wet patterned boreal bog. Biogeosciences, 2018, 15, 1749-1761.	1.3	21
89	Vertical fluxes of monoterpenes above a Scots pine stand in the Boreal vegetation zone. Physics and Chemistry of the Earth, 1999, 24, 711-715.	0.3	20
90	Micrometeorological Observations of a Microburst in Southern Finland. Boundary-Layer Meteorology, 2007, 125, 343-359.	1.2	19

JANNE RINNE

#	Article	IF	CITATIONS
91	A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO ₂ and CH ₄ fluxes. Biogeosciences, 2014, 11, 1961-1980.	1.3	19
92	Ambient measurements of aromatic and oxidized VOCs by PTR-MS and GC-MS: intercomparison between four instruments in a boreal forest in Finland. Atmospheric Measurement Techniques, 2015, 8, 4453-4473.	1.2	19
93	Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data. Remote Sensing, 2021, 13, 818.	1.8	19
94	Sources of long-lived atmospheric VOCs at the rural boreal forest site, SMEAR II. Atmospheric Chemistry and Physics, 2015, 15, 13413-13432.	1.9	18
95	Prescribed burning of logging slash in the boreal forest of Finland: emissions and effects on meteorological quantities and soil properties. Atmospheric Chemistry and Physics, 2014, 14, 4473-4502.	1.9	17
96	Disjunct Eddy Covariance Method. , 2012, , 291-307.		15
97	Similarity in Fog and Rainfall Intermittency. Geophysical Research Letters, 2018, 45, 10,691.	1.5	15
98	The dependence of the \hat{l}^2 coefficient of REA system with dynamic deadband on atmospheric conditions. Environmental Pollution, 2008, 152, 597-603.	3.7	13
99	Simple, stable, and affordable: Towards long-term ecosystem scale flux measurements of VOCs. Atmospheric Environment, 2016, 131, 225-227.	1.9	13
100	Modelling Daily Gross Primary Productivity with Sentinel-2 Data in the Nordic Region–Comparison with Data from MODIS. Remote Sensing, 2021, 13, 469.	1.8	12
101	Effects of livestock and wildlife grazing intensity on soil carbon dioxide flux in the savanna grassland of Kenya. Agriculture, Ecosystems and Environment, 2022, 325, 107713.	2.5	12
102	Terpenoid emissions from fully grown east Siberian <i>Larix cajanderi</i> trees. Biogeosciences, 2013, 10, 4705-4719.	1.3	11
103	Rootâ€zone soil moisture variability across African savannas: From pulsed rainfall to landâ€cover switches. Ecohydrology, 2020, 13, e2213.	1.1	10
104	Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications Earth & Environment, 2022, 3, .	2.6	8
105	A Simple Method to Determine the Timing of Snow Melt by Remote Sensing with Application to the CO2 Balances of Northern Mire and Heath Ecosystems. Remote Sensing, 2009, 1, 1097-1107.	1.8	6
106	Soil greenhouse gas emissions from a sisal chronosequence in Kenya. Agricultural and Forest Meteorology, 2021, 307, 108465.	1.9	5
107	Field-scale CH ₄ emission at a subarctic mire with heterogeneous permafrost thaw status. Biogeosciences, 2021, 18, 5811-5830.	1.3	5
108	Determination of <i>de novo</i> and pool emissions of terpenes from four common boreal/alpine trees by ¹³ CO ₂ labelling and PTR-MS analysis. Plant, Cell and Environment, 2010, 33, 781.	2.8	1