David A Lyons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7739282/publications.pdf

Version: 2024-02-01

		147566	168136
53	4,837	31	53
papers	citations	h-index	g-index
02	02	02	E2E1
83	83	83	5351
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Clusters of neuronal neurofascin prefigure the position of a subset of nodes of Ranvier along individual central nervous system axons inÂvivo. Cell Reports, 2022, 38, 110366.	2.9	7
2	New oligodendrocytes exhibit more abundant and accurate myelin regeneration than those that survive demyelination. Nature Neuroscience, 2022, 25, 415-420.	7.1	54
3	Revisiting remyelination: Towards a consensus on the regeneration of CNS myelin. Seminars in Cell and Developmental Biology, 2021, 116, 3-9.	2.3	82
4	PTPN21/Pez Is a Novel and Evolutionarily Conserved Key Regulator of Inflammation InÂVivo. Current Biology, 2021, 31, 875-883.e5.	1.8	5
5	CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLoS Genetics, 2021, 17, e1009515.	1.5	36
6	iPSC-derived myelinoids to study myelin biology of humans. Developmental Cell, 2021, 56, 1346-1358.e6.	3.1	34
7	TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nature Communications, 2021, 12, 3359.	5.8	47
8	Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length. Journal of Neuroscience, 2021, 41, 7954-7964.	1.7	20
9	Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath growth. Current Biology, 2021, 31, 3743-3754.e5.	1.8	32
10	Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 754606.	1.8	5
11	Calcium Signaling in the Oligodendrocyte Lineage: Regulators and Consequences. Annual Review of Neuroscience, 2020, 43, 163-186.	5.0	45
12	Neuronal activity disrupts myelinated axon integrity in the absence of NKCC1b. Journal of Cell Biology, 2020, 219, .	2.3	18
13	Myelinating Schwann cells ensheath multiple axons in the absence of E3 ligase component Fbxw7. Nature Communications, 2019, 10, 2976.	5.8	39
14	Myelinated axon physiology and regulation of neural circuit function. Glia, 2019, 67, 2050-2062.	2.5	79
15	Forward Genetic Screen Using Zebrafish to Identify New Genes Involved in Myelination. Methods in Molecular Biology, 2019, 1936, 185-209.	0.4	9
16	A Drug-Inducible Transgenic Zebrafish Model for Myelinating Glial Cell Ablation. Methods in Molecular Biology, 2019, 1936, 227-238.	0.4	6
17	Light sheet microscopy with acoustic sample confinement. Nature Communications, 2019, 10, 669.	5.8	25
18	Manipulating Neuronal Activity in the Developing Zebrafish Spinal Cord to Investigate Adaptive Myelination. Methods in Molecular Biology, 2019, 1936, 211-225.	0.4	1

#	Article	IF	CITATIONS
19	Oligodendrocyte Neurofascin Independently Regulates Both Myelin Targeting and Sheath Growth in the CNS. Developmental Cell, 2019, 51, 730-744.e6.	3.1	35
20	Endothelin signalling mediates experience-dependent myelination in the CNS. ELife, 2019, 8, .	2.8	64
21	Myelination of Neuronal Cell Bodies when Myelin Supply Exceeds Axonal Demand. Current Biology, 2018, 28, 1296-1305.e5.	1.8	38
22	Axonal Regulation of Central Nervous System Myelination: Structure and Function. Neuroscientist, 2018, 24, 7-21.	2.6	32
23	Ca2+ activity signatures of myelin sheath formation and growth in vivo. Nature Neuroscience, 2018, 21, 19-23.	7.1	151
24	Myelin Dynamics Throughout Life: An Ever-Changing Landscape?. Frontiers in Cellular Neuroscience, 2018, 12, 424.	1.8	121
25	Glia as architects of central nervous system formation and function. Science, 2018, 362, 181-185.	6.0	520
26	An automated high-resolution in vivo screen in zebrafish to identify chemical regulators of myelination. ELife, 2018, 7, .	2.8	93
27	Drug discovery for remyelination and treatment of MS. Glia, 2017, 65, 1565-1589.	2.5	41
28	On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function. Journal of Neuroscience, 2017, 37, 10023-10034.	1.7	168
29	Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber. PLoS ONE, 2017, 12, e0178058.	1.1	28
30	Imaging Myelination In Vivo Using Transparent Animal Models. Brain Plasticity, 2016, 2, 3-29.	1.9	25
31	Adaptive myelination from fish to man. Brain Research, 2016, 1641, 149-161.	1.1	58
32	Individual Neuronal Subtypes Exhibit Diversity in CNS Myelination Mediated by Synaptic Vesicle Release. Current Biology, 2016, 26, 1447-1455.	1.8	147
33	Somatodendritic Expression of JAM2 Inhibits Oligodendrocyte Myelination. Neuron, 2016, 91, 824-836.	3.8	79
34	Oligodendrocyte Development in the Absence of Their Target Axons In Vivo. PLoS ONE, 2016, 11, e0164432.	1.1	30
35	Actin Filament Turnover Drives Leading Edge Growth during Myelin Sheath Formation in the Central Nervous System. Developmental Cell, 2015, 34, 139-151.	3.1	183
36	Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nature Neuroscience, 2015, 18, 628-630.	7.1	332

#	Article	IF	Citations
37	Glial Cell Development and Function in Zebrafish. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020586.	2.3	102
38	Myelin Membrane Wrapping of CNS Axons by PI(3,4,5)P3-Dependent Polarized Growth at the Inner Tongue. Cell, 2014, 156, 277-290.	13.5	326
39	Axonal selection and myelin sheath generation in the central nervous system. Current Opinion in Cell Biology, 2013, 25, 512-519.	2.6	79
40	Individual Oligodendrocytes Have Only a Few Hours in which to Generate New Myelin Sheaths InÂVivo. Developmental Cell, 2013, 25, 599-609.	3.1	261
41	Targeting Mechanisms in Myelinated Axons: Not All Nodes Are Created Equal. Developmental Cell, 2012, 22, 7-9.	3.1	4
42	Dissecting Mechanisms of Myelinated Axon Formation Using Zebrafish. Methods in Cell Biology, 2011, 105, 25-62.	0.5	54
43	ErbB signaling has a role in radial sorting independent of Schwann cell number. Glia, 2011, 59, 1047-1055.	2.5	38
44	Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development (Cambridge), 2011, 138, 4443-4450.	1.2	178
45	Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons. Nature Genetics, 2009, 41, 854-858.	9.4	145
46	Axonal Domains: Role for Paranodal Junction in Node of Ranvier Assembly. Current Biology, 2008, 18, R876-R879.	1.8	2
47	KBP is essential for axonal structure, outgrowth and maintenance in zebrafish, providing insight into the cellular basis of Goldberg-Shprintzen syndrome. Development (Cambridge), 2008, 135, 599-608.	1.2	82
48	A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature, 2007, 446, 797-800.	13.7	205
49	\hat{l}_{\pm} II-Spectrin Is Essential for Assembly of the Nodes of Ranvier in Myelinated Axons. Current Biology, 2007, 17, 562-568.	1.8	82
50	A genetic screen identifies genes essential for development of myelinated axons in zebrafish. Developmental Biology, 2006, 298, 118-131.	0.9	112
51	nsf Is Essential for Organization of Myelinated Axons in Zebrafish. Current Biology, 2006, 16, 636-648.	1.8	45
52	erbb3 and erbb2 Are Essential for Schwann Cell Migration and Myelination in Zebrafish. Current Biology, 2005, 15, 513-524.	1.8	300
53	Monitoring neural progenitor fate through multiple rounds of division in an intact vertebrate brain. Development (Cambridge), 2003, 130, 3427-3436.	1.2	99