Antoinette Hollestelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7739181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	13.7	1,099
2	Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nature Genetics, 2002, 31, 55-59.	9.4	1,001
3	Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 45, 353-361.	9.4	960
4	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	2.6	711
5	Associations of Breast Cancer Risk Factors With Tumor Subtypes: A Pooled Analysis From the Breast Cancer Association Consortium Studies. Journal of the National Cancer Institute, 2011, 103, 250-263.	3.0	596
6	Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.	13.9	532
7	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	9.4	513
8	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	9.4	493
9	Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants. Journal of the National Cancer Institute, 2015, 107, .	3.0	428
10	Genome-wide association studies identify four ER negative–specific breast cancer risk loci. Nature Genetics, 2013, 45, 392-398.	9.4	374
11	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	9.4	289
12	Phosphatidylinositol-3-OH Kinase or RAS Pathway Mutations in Human Breast Cancer Cell Lines. Molecular Cancer Research, 2007, 5, 195-201.	1.5	271
13	Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581.	9.4	265
14	Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nature Genetics, 2012, 44, 312-318.	9.4	256
15	Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Research and Treatment, 2010, 121, 53-64.	1.1	247
16	BRCA1 Mutation Analysis of 41 Human Breast Cancer Cell Lines Reveals Three New Deleterious Mutants. Cancer Research, 2006, 66, 41-45.	0.4	237
17	The CHEK2 1100delC Mutation Identifies Families with a Hereditary Breast and Colorectal Cancer Phenotype. American Journal of Human Genetics, 2003, 72, 1308-1314.	2.6	185
18	A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature Genetics, 2018, 50, 968-978.	9.4	184

ANTOINETTE HOLLESTELLE

#	Article	IF	CITATIONS
19	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COCS. Journal of Medical Genetics, 2016, 53, 800-811.	1.5	174
20	miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Research, 2013, 15, R33.	2.2	170
21	Analysis of TP53 Mutation Status in Human Cancer Cell Lines: A Reassessment. Human Mutation, 2014, 35, 756-765.	1.1	170
22	Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2011, 20, 3289-3303.	1.4	152
23	Age- and Tumor Subtype–Specific Breast Cancer Risk Estimates for <i>CHEK2</i> *1100delC Carriers. Journal of Clinical Oncology, 2016, 34, 2750-2760.	0.8	152
24	A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. Lancet Oncology, The, 2011, 12, 377-386.	5.1	130
25	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	9.4	125
26	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	9.4	120
27	Loss of E-cadherin is not a necessity for epithelial to mesenchymal transition in human breast cancer. Breast Cancer Research and Treatment, 2013, 138, 47-57.	1.1	110
28	Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nature Genetics, 2012, 44, 1182-1184.	9.4	99
29	Discovering moderate-risk breast cancer susceptibility genes. Current Opinion in Genetics and Development, 2010, 20, 268-276.	1.5	96
30	ldentification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	5.8	93
31	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	5.8	90
32	Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. International Journal of Epidemiology, 2019, 48, 795-806.	0.9	81
33	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	5.8	78
34	Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1. American Journal of Human Genetics, 2015, 96, 5-20.	2.6	76
35	<i>BRCA2</i> Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Research, 2017, 77, 2789-2799.	0.4	75
36	Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genetics in Medicine, 2017, 19, 599-603.	1.1	67

ANTOINETTE HOLLESTELLE

#	Article	IF	CITATIONS
37	Survival and contralateral breast cancer in CHEK2 1100delC breast cancer patients: impact of adjuvant chemotherapy. British Journal of Cancer, 2014, 111, 1004-1013.	2.9	58
38	Identification of Novel Genetic Markers of Breast Cancer Survival. Journal of the National Cancer Institute, 2015, 107, .	3.0	56
39	Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups. Breast Cancer Research, 2016, 18, 104.	2.2	56
40	A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Research, 2018, 78, 5419-5430.	0.4	54
41	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	2.9	52
42	Annexin A1 expression in a pooled breast cancer series: association with tumor subtypes and prognosis. BMC Medicine, 2015, 13, 156.	2.3	51
43	Fineâ€scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. International Journal of Cancer, 2016, 139, 1303-1317.	2.3	51
44	Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Research, 2016, 18, 22.	2.2	43
45	Reproductive profiles and risk of breast cancer subtypes: a multi-center case-only study. Breast Cancer Research, 2017, 19, 119.	2.2	43
46	Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Human Molecular Genetics, 2015, 24, 2966-2984.	1.4	40
47	Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast. PLoS Genetics, 2014, 10, e1004285.	1.5	39
48	Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk. American Journal of Human Genetics, 2020, 107, 837-848.	2.6	39
49	Four human breast cancer cell lines with biallelic inactivating α-catenin gene mutations. Breast Cancer Research and Treatment, 2010, 122, 125-133.	1.1	38
50	Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Human Molecular Genetics, 2015, 24, 285-298.	1.4	38
51	Comment Re: MDA-MB-435 and M14 Cell Lines: Identical but not M14 Melanoma?. Cancer Research, 2009, 69, 7893-7893.	0.4	36
52	Rare <i>BRCA1</i> haplotypes including 3'UTR SNPs associated with breast cancer risk. Cell Cycle, 2011, 10, 90-99.	1.3	36
53	A genome-wide association scan on estrogen receptor-negative breast cancer. Breast Cancer Research, 2010, 12, R93.	2.2	35
54	Prevalence of the variant allele rs61764370 T>G in the 3′UTR of KRAS among Dutch BRCA1, BRCA2 and non-BRCA1/BRCA2 breast cancer families. Breast Cancer Research and Treatment, 2011, 128, 79-84.	1.1	35

#	Article	IF	CITATIONS
55	Addition of a 161-SNP polygenic risk score to family history-based risk prediction: impact on clinical management in non- <i>BRCA1/2</i> breast cancer families. Journal of Medical Genetics, 2019, 56, 581-589.	1.5	35
56	Genetically Predicted Levels of DNA Methylation Biomarkers and Breast Cancer Risk: Data From 228 951 Women of European Descent. Journal of the National Cancer Institute, 2020, 112, 295-304.	3.0	35
57	A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium. Human Molecular Genetics, 2014, 23, 1934-1946.	1.4	32
58	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	0.6	32
59	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	2.2	31
60	CHEK2*1100delC homozygosity in the Netherlands—prevalence and risk of breast and lung cancer. European Journal of Human Genetics, 2014, 22, 46-51.	1.4	29
61	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	2.3	28
62	Confirmation of 5p12 As a Susceptibility Locus for Progesterone-Receptor–Positive, Lower Grade Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2222-2231.	1.1	27
63	E-cadherin promotor methylation and mutation are inversely related to motility capacity of breast cancer cells. Breast Cancer Research and Treatment, 2012, 136, 365-377.	1.1	26
64	Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Research, 2015, 17, 58.	2.2	26
65	Low-risk susceptibility alleles in 40 human breast cancer cell lines. BMC Cancer, 2009, 9, 236.	1.1	25
66	Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium. Journal of Pathology: Clinical Research, 2015, 1, 18-32.	1.3	24
67	Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1680-1691.	1.1	24
68	Tumor-associated inflammation as a potential prognostic tool in BRCA1/2-associated breast cancer. Human Pathology, 2015, 46, 182-190.	1.1	23
69	GATA3 mRNA expression, but not mutation, associates with longer progression-free survival in ER-positive breast cancer patients treated with first-line tamoxifen for recurrent disease. Cancer Letters, 2016, 376, 104-109.	3.2	22
70	Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Scientific Reports, 2016, 6, 32512.	1.6	19
71	Highâ€ŧhroughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium. Journal of Pathology: Clinical Research, 2016, 2, 138-153.	1.3	19
72	The <i>BRCA2</i> c.68-7TÂ>ÂA variant is not pathogenic: A model for clinical calibration of spliceogenicity. Human Mutation, 2018, 39, 729-741.	1.1	19

ANTOINETTE HOLLESTELLE

#	Article	IF	CITATIONS
73	Etiology of hormone receptor positive breast cancer differs by levels of histologic grade and proliferation. International Journal of Cancer, 2018, 143, 746-757.	2.3	19
74	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	5.8	19
75	Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Medicine, 2022, 14, 51.	3.6	19
76	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	0.6	18
77	The Prevalence of CD146 Expression in Breast Cancer Subtypes and Its Relation to Outcome. Cancers, 2018, 10, 134.	1.7	18
78	9q31.2-rs865686 as a Susceptibility Locus for Estrogen Receptor-Positive Breast Cancer: Evidence from the Breast Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1783-1791.	1.1	17
79	2q36.3 is associated with prognosis for oestrogen receptor-negative breast cancer patients treated with chemotherapy. Nature Communications, 2014, 5, 4051.	5.8	16
80	The predictive ability of the 313 variant–based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant. Genetics in Medicine, 2021, 23, 1726-1737.	1.1	16
81	The 29.5 kb APOBEC3B Deletion Polymorphism Is Not Associated with Clinical Outcome of Breast Cancer. PLoS ONE, 2016, 11, e0161731.	1.1	15
82	Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Research, 2022, 24, 2.	2.2	15
83	Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study. Breast Cancer Research, 2014, 16, R51.	2.2	14
84	Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer. Carcinogenesis, 2015, 36, 256-271.	1.3	14
85	Low Tumor Mitochondrial DNA Content Is Associated with Better Outcome in Breast Cancer Patients Receiving Anthracycline-Based Chemotherapy. Clinical Cancer Research, 2017, 23, 4735-4743.	3.2	14
86	Exon Expression Arrays as a Tool to Identify New Cancer Genes. PLoS ONE, 2008, 3, e3007.	1.1	12
87	Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. PLoS ONE, 2016, 11, e0160316.	1.1	12
88	Common Susceptibility Loci for Male Breast Cancer. Journal of the National Cancer Institute, 2021, 113, 453-461.	3.0	12
89	Elucidating the Underlying Functional Mechanisms of Breast Cancer Susceptibility Through Post-GWAS Analyses. Frontiers in Genetics, 2018, 9, 280.	1.1	11
90	Sensitivity to systemic therapy for metastatic breast cancer in CHEK2 1100delC mutation carriers. Journal of Cancer Research and Clinical Oncology, 2015, 141, 1879-1887.	1.2	10

#	Article	IF	CITATIONS
91	Deleterious CHEK2 1100delC and L303X mutants identified among 38 human breast cancer cell lines. Breast Cancer Research and Treatment, 2009, 113, 285-291.	1.1	9
92	A polymorphism in the base excision repair gene PARP2 is associated with differential prognosis by chemotherapy among postmenopausal breast cancer patients. BMC Cancer, 2015, 15, 978.	1.1	6
93	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	2.6	6
94	Rare germline copy number variants (CNVs) and breast cancer risk. Communications Biology, 2022, 5, 65.	2.0	6
95	A pipeline for copy number profiling of single circulating tumour cells to assess intrapatient tumour heterogeneity. Molecular Oncology, 2022, 16, 2981-3000.	2.1	6
96	Representational Difference Analysis as a Tool in the Search for New Tumor Suppressor Genes. , 2005, 103, 143-160.		4
97	Recurrent HOXB13 mutations in the Dutch population do not associate with increased breast cancer risk. Scientific Reports, 2016, 6, 30026.	1.6	3
98	Growth and metastatic behavior of molecularly well-characterized human breast cancer cell lines in mice. Breast Cancer Research and Treatment, 2014, 148, 19-31.	1.1	2
99	rs2735383, located at a microRNA binding site in the 3'UTR of NBS1, is not associated with breast cancer risk. Scientific Reports, 2016, 6, 36874.	1.6	2
100	Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk. Scientific Reports, 2020, 10, 9688.	1.6	2
101	Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium. The Clinical Journal of Pathology, 2014, , n/a-n/a.	0.0	2
102	Germline variants and breast cancer survival in patients with distant metastases at primary breast cancer diagnosis. Scientific Reports, 2021, 11, 19787.	1.6	2
103	Uncovering the Contribution of Moderate-Penetrance Susceptibility Genes to Breast Cancer by Whole-Exome Sequencing and Targeted Enrichment Sequencing of Candidate Genes in Women of European Ancestry. Cancers, 2022, 14, 3363.	1.7	2
104	Identifying Transcripts with Tandem Duplications from RNA-Sequencing Data to Predict BRCA1-Type Primary Breast Cancer. Cancers, 2022, 14, 753.	1.7	1
105	Another step forward towards unraveling the biological mechanisms driving breast cancer predisposition: a role for non-coding RNAs. Non-coding RNA Investigation, 0, 4, 3-3.	0.6	0
106	Abstract 2793: NotHOXB13p.C84E, but p.R217C appears to be associated with increased breast cancer risk in the Dutch population. , 2015, , .		0
107	Abstract 2780: High nuclear FTH1 protein expression predicts early disease recurrence for BRCA1/2 mutation carriers. , 2017, , .		0