Lan Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7739067/publications.pdf

Version: 2024-02-01

331538 276775 1,787 58 21 41 citations h-index g-index papers 58 58 58 1476 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spectroscopy on the electron-electric-dipole-moment–sensitive states of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi mathvariant="normal">ThF</mml:mi><mml:mo>+</mml:mo></mml:msup></mml:math> . Physical Review A, 2022, 105, .	1.0	7
2	Quadratic Unitary Coupled-Cluster Singles and Doubles Scheme: Efficient Implementation, Benchmark Study, and Formulation of an Extended Version. Journal of Chemical Theory and Computation, 2022, 18, 2281-2291.	2.3	4
3	Geometry optimizations with spinor-based relativistic coupled-cluster theory. Journal of Chemical Physics, 2022, 156, 151101.	1.2	5
4	Inner-shell excitation in the YbF molecule and its impact on laser cooling. Journal of Molecular Spectroscopy, 2022, 386, 111625.	0.4	8
5	Photoelectron spectroscopy of cryogenically cooled NiO ₂ ^{â^'} <i>via</i> slow photoelectron velocity-map imaging. Physical Chemistry Chemical Physics, 2022, 24, 17496-17503.	1.3	2
6	Atomic Mean-Field Approach within Exact Two-Component Theory Based on the Dirac–Coulomb–Breit Hamiltonian. Journal of Physical Chemistry A, 2022, 126, 4537-4553.	1.1	15
7	Analytic evaluation of energy first derivatives for spin–orbit coupled-cluster singles and doubles augmented with noniterative triples method: General formulation and an implementation for first-order properties. Journal of Chemical Physics, 2021, 154, 064110.	1.2	11
8	Photoelectron Spectroscopic and <i>ab Initio</i> Computational Studies of the Anion, HThO ^{â€"} . Journal of Physical Chemistry A, 2021, 125, 1903-1909.	1.1	2
9	Relativistic coupledâ€cluster and equationâ€ofâ€motion coupledâ€cluster methods. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2021: 11 e 1536 Anion photoelectron spectroscopic and relativistic coupled-cluster studies of uranyl dichloride	6.2	26
10	anion, UO <mml:math altimg="si74.svg" display="inline" id="d1e792" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:math> Cl <mml:math <="" display="inline" id="d1e800" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0.4</td><td>3</td></mml:math>	0.4	3
11	altimg="si76.svg"> <mml:msubsup><mml:mrow /> mml:mrow> mml:mn>2 /mml:mn> mml: Calculations of time-reversal-symmetry-violation sensitivity parameters based on analytic relativistic coupled-cluster gradient theory. Physical Review A, 2021, 104, .</mml:mrow </mml:msubsup>	1.0	10
12	Electronic structure of NdO via slow photoelectron velocity-map imaging spectroscopy of NdO Journal of Chemical Physics, 2021, 155, 114305.	1.2	4
13	Multiphoton Control of 6π Photocyclization via State-Dependent Reactant–Product Correlations. Journal of Physical Chemistry Letters, 2021, 12, 9493-9500.	2.1	3
14	Limitations of perturbative coupled-cluster approximations for highly accurate investigations of Rb2+. Journal of Chemical Physics, 2021, 155, 124101.	1.2	1
15	Accurate prediction and measurement of vibronic branching ratios for laser cooling linear polyatomic molecules. Journal of Chemical Physics, 2021, 155, 091101.	1.2	30
16	Unitary coupled-cluster based self-consistent polarization propagator theory: A quadratic unitary coupled-cluster singles and doubles scheme. Journal of Chemical Physics, 2021, 155, 174102.	1.2	5
17	Towards accurate prediction for laser-coolable molecules: relativistic coupled-cluster calculations for yttrium monoxide and prospects for improving its laser cooling efficiencies. Physical Chemistry Chemical Physics, 2020, 22, 26167-26177.	1.3	10
18	Mapping the Electronic Structure of the Uranium(VI) Dinitride Molecule, UN2. Journal of Physical Chemistry A, 2020, 124, 6486-6492.	1.1	8

#	Article	IF	CITATIONS
19	Coupled-cluster techniques for computational chemistry: The <scp>CFOUR</scp> program package. Journal of Chemical Physics, 2020, 152, 214108.	1.2	375
20	Branching Ratios, Radiative Lifetimes, and Transition Dipole Moments for YbOH. Journal of Physical Chemistry A, 2020, 124, 3135-3148.	1.1	20
21	Hetero-site Double Core Ionization Energies with Sub-electronvolt Accuracy from Delta-Coupled-Cluster Calculations. Journal of Physical Chemistry A, 2020, 124, 4413-4426.	1.1	11
22	Performance of an atomic mean-field spin–orbit approach within exact two-component theory for perturbative treatment of spin–orbit coupling. Molecular Physics, 2020, 118, e1768313.	0.8	15
23	Coupled cluster study of the x-ray absorption spectra of formaldehyde derivatives at the oxygen, carbon, and fluorine K-edges. Journal of Chemical Physics, 2019, 151, 064107.	1.2	24
24	Performance of Delta-Coupled-Cluster Methods for Calculations of Core-lonization Energies of First-Row Elements. Journal of Chemical Theory and Computation, 2019, 15, 4945-4955.	2.3	50
25	A study of non-iterative triples contributions in relativistic equation-of-motion coupled-cluster calculations using an exact two-component Hamiltonian with atomic mean-field spin-orbit integrals: Application to uranyl and other heavy-element compounds. Journal of Chemical Physics, 2019, 151, 104103.	1.2	14
26	Benchmark Calculations of K-Edge Ionization Energies for First-Row Elements Using Scalar-Relativistic Coreâ€"Valence-Separated Equation-of-Motion Coupled-Cluster Methods. Journal of Chemical Theory and Computation, 2019, 15, 1642-1651.	2.3	54
27	Optical Stark and Zeeman Spectroscopy of Thorium Fluoride (ThF) and Thorium Chloride (ThCl). Journal of Physical Chemistry A, 2019, 123, 1423-1433.	1.1	6
28	Visible and ultraviolet laser spectroscopy of ThF. Journal of Molecular Spectroscopy, 2019, 358, 1-16.	0.4	8
29	Exact two-component equation-of-motion coupled-cluster singles and doubles method using atomic mean-field spin-orbit integrals. Journal of Chemical Physics, 2019, 150, 074102.	1.2	32
30	An analysis of the performance of coupled cluster methods for K-edge core excitations and ionizations using standard basis sets. Advances in Quantum Chemistry, 2019, 79, 241-261.	0.4	30
31	A theoretical and experimental benchmark study of core-excited states in nitrogen. Journal of Chemical Physics, 2018, 148, 064106.	1.2	27
32	Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods. Journal of Chemical Physics, 2018, 148, 044108.	1.2	40
33	Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals. Journal of Chemical Physics, 2018, 148, 034106.	1.2	42
34	Matrix-Isolation and Quantum-Chemical Analysis of the C3v Conformer of XeF6, XeOF4, and Their Acetonitrile Adducts. Journal of Physical Chemistry A, 2018, 122, 119-129.	1.1	17
35	Unitary coupled-cluster based self-consistent polarization propagator theory: A third-order formulation and pilot applications. Journal of Chemical Physics, 2018, 148, 244110.	1.2	27
36	An atomic mean-field spin-orbit approach within exact two-component theory for a non-perturbative treatment of spin-orbit coupling. Journal of Chemical Physics, 2018, 148, 144108.	1.2	58

#	Article	IF	CITATIONS
37	Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 Molecules. Journal of Chemical Theory and Computation, 2017, 13, 1044-1056.	2.3	81
38	The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS. Journal of Chemical Physics, 2017, 146, 064307.	1.2	7
39	Low-lying vibronic level structure of the ground state of the methoxy radical: Slow electron velocity-map imaging (SEVI) spectra and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations. Journal of Chemical Physics, 2017, 146, 224309.	1.2	15
40	Characterization of the [18.28]0â^–a3Δ1 (0,0) band of tantalum nitride, TaN. Journal of Chemical Physics, 2017, 147, 154304.	1.2	0
41	Benchmark calculations on the nuclear quadrupole-coupling parameters for open-shell molecules using non-relativistic and scalar-relativistic coupled-cluster methods. Journal of Chemical Physics, 2015, 143, 064301.	1.2	1
42	Relativistic coupled-cluster calculations on XeF6: Delicate interplay between electron-correlation and basis-set effects. Journal of Chemical Physics, 2015, 142, 224309.	1.2	13
43	Inner-shell photoionization and core-hole decay of Xe and XeF2. Journal of Chemical Physics, 2015, 142, 224302.	1.2	15
44	The permanent electric dipole moment of gold chloride, AuCl. Molecular Physics, 2015, 113, 2073-2080.	0.8	3
45	Analytic energy derivatives in relativistic quantum chemistry. International Journal of Quantum Chemistry, 2014, 114, 1108-1127.	1.0	35
46	Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory. Journal of Chemical Physics, 2014, 141, 164107.	1.2	27
47	Spin-free Dirac-Coulomb calculations augmented with a perturbative treatment of spin-orbit effects at the Hartree-Fock level. Journal of Chemical Physics, 2013, 139, 214114.	1.2	15
48	The Simplest Criegee Intermediate (H ₂ Câ•O–O): Isotopic Spectroscopy, Equilibrium Structure, and Possible Formation from Atmospheric Lightning. Journal of Physical Chemistry Letters, 2013, 4, 4133-4139.	2.1	88
49	The bromine nuclear quadrupole moment revisited. Molecular Physics, 2013, 111, 1382-1389.	0.8	7
50	Rotational spectra of rare isotopic species of fluoroiodomethane: Determination of the equilibrium structure from rotational spectroscopy and quantum-chemical calculations. Journal of Chemical Physics, 2012, 137, 024310.	1.2	24
51	The route to high accuracy in <i>ab initio</i> calculations of Cu quadrupole-coupling constants. Journal of Chemical Physics, 2012, 137, 224302.	1.2	17
52	Analytical evaluation of first-order electrical properties based on the spin-free Dirac-Coulomb Hamiltonian. Journal of Chemical Physics, 2011, 134, 244112.	1.2	42
53	Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian. Journal of Chemical Physics, 2011, 135, 084114.	1.2	136
54	Direct perturbation theory in terms of energy derivatives: Scalar-relativistic treatment up to sixth order. Journal of Chemical Physics, 2011, 135, 194114.	1.2	10

#	Article	IF	CITATION
55	Analytic second derivatives for the spin-free exact two-component theory. Journal of Chemical Physics, 2011, 135, 244104.	1.2	35
56	Making four- and two-component relativistic density functional methods fully equivalent based on the idea of â€æfrom atoms to molecule― Journal of Chemical Physics, 2007, 127, 104106.	1.2	210
57	Introduction to the John Stanton special issue. Molecular Physics, 0, , .	0.8	O
58	Benchmark Relativistic Delta-Coupled-Cluster Calculations of K-Edge Core-Ionization Energies for Third-Row Elements. Physical Chemistry Chemical Physics, 0, , .	1.3	2